Sinclair Laura C, Swann William C, Bergeron Hugo, Baumann Esther, Cermak Michael, Coddington Ian, Deschênes Jean-Daniel, Giorgetta Fabrizio R, Juarez Juan C, Khader Isaac, Petrillo Keith G, Souza Katherine T, Dennis Michael L, Newbury Nathan R
National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA.
Université Laval, 2325 Rue de l'Université, Québec, Québec, G1V 0A6, Canada.
Appl Phys Lett. 2016 Oct 15;109(15). doi: 10.1063/1.4963130. Epub 2016 Oct 11.
We demonstrate real-time, femtosecond-level clock synchronization across a low-lying, strongly turbulent, 12-km horizontal air path by optical two-way time transfer. For this long horizontal free-space path, the integrated turbulence extends well into the strong turbulence regime corresponding to multiple scattering with a Rytov variance up to 7 and with the number of signal interruptions exceeding 100 per second. Nevertheless, optical two-way time transfer is used to synchronize a remote clock to a master clock with femtosecond-level agreement and with a relative time deviation dropping as low as a few hundred attoseconds. Synchronization is shown for a remote clock based on either an optical or microwave oscillator and using either tip-tilt or adaptive-optics free-space optical terminals. The performance is unaltered from optical two-way time transfer in weak turbulence across short links. These results confirm that the two-way reciprocity of the free-space time-of-flight is maintained both under strong turbulence and with the use of adaptive optics. The demonstrated robustness of optical two-way time transfer against strong turbulence and its compatibility with adaptive optics is encouraging for future femtosecond clock synchronization over very long distance ground-to-air free-space paths.
我们通过光学双向时间传递,在一条低洼、强湍流的12公里水平空气路径上实现了飞秒级的实时时钟同步。对于这条长水平自由空间路径,累积湍流延伸至强湍流区域,对应于高达7的Rytov方差的多次散射,信号中断次数超过每秒100次。尽管如此,光学双向时间传递仍用于将远程时钟与主时钟同步,实现飞秒级的一致性,相对时间偏差低至几百阿秒。展示了基于光学或微波振荡器的远程时钟以及使用倾摆或自适应光学自由空间光学终端的同步情况。在短链路的弱湍流中,光学双向时间传递的性能保持不变。这些结果证实,自由空间飞行时间的双向互易性在强湍流和使用自适应光学的情况下均得以保持。所展示的光学双向时间传递对强湍流的鲁棒性及其与自适应光学的兼容性,对于未来在极长距离地对空自由空间路径上的飞秒时钟同步而言是令人鼓舞的。