Bergeron Hugo, Sinclair Laura C, Swann William C, Nelson Craig W, Deschênes Jean-Daniel, Baumann Esther, Giorgetta Fabrizio R, Coddington Ian, Newbury Nathan R
National Institute of Standards and Technology, 325 Broadway, Boulder, CO, 80305, USA.
Université Laval, 2325 Rue de l'Université, Québec, QC, G1V 0A6, Canada.
Optica. 2016 Apr;3(4):441-447. doi: 10.1364/OPTICA.3.000441. Epub 2016 Apr 15.
The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10 at one second and below 10 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems.
将光钟的精确时间和频率分配到远程平台的能力,有望实现未来的精确导航和传感系统。在此,我们展示了通过光双向时频传输,在4公里长的湍流露天路径上,将远程微波钟与主光钟进行紧密、实时同步。同步后,每个站点产生的10吉赫兹频率信号在1秒时相差10,在1000秒时相差低于10。此外,两个时钟时间在8小时内同步到±13飞秒。跨平台对10吉赫兹信号进行相位同步的能力,支持未来的分布式相干传感;而将多个基于微波的时钟与高性能主光钟进行时间同步的能力,则支持未来的精密导航/计时系统。