Laboratorio de Sistemas Bioinspirados, Departamento de Ingeniería Electrónica, DICIS, Universidad de Guanajuato, Carr. Salamanca-Valle de Santiago Km. 3.5 + 1.8 Km., 36885 Salamanca, GTO, Mexico.
Laboratorio de Procesamiento Digital de Señales, Departamento de Ingeniería Electrónica, DICIS, Universidad de Guanajuato, Carr. Salamanca-Valle de Santiago Km. 3.5 + 1.8 Km., 36885 Salamanca, GTO, Mexico.
Comput Intell Neurosci. 2017;2017:9817305. doi: 10.1155/2017/9817305. Epub 2017 Dec 3.
We present an improvement to the quaternion-based signal analysis (QSA) technique to extract electroencephalography (EEG) signal features with a view to developing real-time applications, particularly in motor imagery (IM) cognitive processes. The proposed methodology (iQSA, QSA) extracts features such as the average, variance, homogeneity, and contrast of EEG signals related to motor imagery in a more efficient manner (i.e., by reducing the number of samples needed to classify the signal and improving the classification percentage) compared to the original QSA technique. Specifically, we can sample the signal in variable time periods (from 0.5 s to 3 s, in half-a-second intervals) to determine the relationship between the number of samples and their effectiveness in classifying signals. In addition, to strengthen the classification process a number of boosting-technique-based decision trees were implemented. The results show an 82.30% accuracy rate for 0.5 s samples and 73.16% for 3 s samples. This is a significant improvement compared to the original QSA technique that offered results from 33.31% to 40.82% without sampling window and from 33.44% to 41.07% with sampling window, respectively. We can thus conclude that iQSA is better suited to develop real-time applications.
我们提出了一种基于四元数的信号分析(QSA)技术的改进方法,旨在提取脑电图(EEG)信号特征,以便开发实时应用程序,特别是在运动想象(IM)认知过程中。所提出的方法(iQSA,QSA)以更有效的方式提取与运动想象相关的 EEG 信号的特征,例如平均、方差、同质性和对比度(即,通过减少分类信号所需的样本数量并提高分类百分比)与原始 QSA 技术相比。具体来说,我们可以在可变时间段(从 0.5 秒到 3 秒,每隔半秒)内对信号进行采样,以确定样本数量与信号分类效果之间的关系。此外,为了加强分类过程,实施了多个基于提升技术的决策树。结果表明,0.5 秒样本的准确率为 82.30%,3 秒样本的准确率为 73.16%。与原始 QSA 技术相比,这是一个显著的改进,原始 QSA 技术分别在没有采样窗口时提供 33.31%至 40.82%的结果,在有采样窗口时提供 33.44%至 41.07%的结果。因此,我们可以得出结论,iQSA 更适合开发实时应用程序。