Suppr超能文献

通过时空 EEG 微观状态探索左右手运动想象的差异。

Exploring differences between left and right hand motor imagery via spatio-temporal EEG microstate.

机构信息

a School of Life Science , Beijing Institute of Technology , Beijing , China.

b Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, The Ministry of Industry and Information Technology , Beijing Institute of Technology , Beijing , China.

出版信息

Comput Assist Surg (Abingdon). 2017 Dec;22(sup1):258-266. doi: 10.1080/24699322.2017.1389404. Epub 2017 Nov 3.

Abstract

EEG-based motor imagery is very useful in brain-computer interface. How to identify the imaging movement is still being researched. Electroencephalography (EEG) microstates reflect the spatial configuration of quasi-stable electrical potential topographies. Different microstates represent different brain functions. In this paper, microstate method was used to process the EEG-based motor imagery to obtain microstate. The single-trial EEG microstate sequences differences between two motor imagery tasks - imagination of left and right hand movement were investigated. The microstate parameters - duration, time coverage and occurrence per second as well as the transition probability of the microstate sequences were obtained with spatio-temporal microstate analysis. The results were shown significant differences (P < 0.05) with paired t-test between the two tasks. Then these microstate parameters were used as features and a linear support vector machine (SVM) was utilized to classify the two tasks with mean accuracy 89.17%, superior performance compared to the other methods. These indicate that the microstate can be a promising feature to improve the performance of the brain-computer interface classification.

摘要

基于脑电图的运动想象在脑机接口中非常有用。如何识别成像运动仍在研究中。脑电图(EEG)微状态反映了准稳定电位拓扑的空间配置。不同的微状态代表不同的大脑功能。在本文中,使用微状态方法对基于脑电图的运动想象进行处理,以获得微状态。研究了两种运动想象任务 - 想象左手和右手运动之间的单试 EEG 微状态序列差异。使用时空微状态分析获得微状态参数 - 持续时间,时间覆盖率和每秒发生次数以及微状态序列的转移概率。配对 t 检验显示这两个任务之间存在显着差异(P <0.05)。然后,将这些微状态参数用作特征,并使用线性支持向量机(SVM)将两个任务进行分类,平均准确率为 89.17%,优于其他方法。这表明微状态可以作为提高脑机接口分类性能的有前途的特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验