Aghaei Amirhossein S, Mahanta Mohammad Shahin, Plataniotis Konstantinos N
IEEE Trans Biomed Eng. 2016 Jan;63(1):15-29. doi: 10.1109/TBME.2015.2487738. Epub 2015 Oct 6.
Feature extraction is one of the most important steps in any brain-computer interface (BCI) system. In particular, spatio-spectral feature extraction for motor-imagery BCIs (MI-BCI) has been the focus of several works in the past decade. This paper proposes a novel method, called separable common spatio-spectral patterns (SCSSP), for extraction of discriminant spatio-spectral EEG features in MI-BCIs.
Assuming a binary classification problem, SCSSP uses a heteroscedastic matrix-variate Gaussian model for the multiband EEG rhythms, and seeks the spatio-spectral features whose variance is maximized for one brain task and minimized for the other task. Therefore, SCSSP can be considered as a spatio-spectral generalization of the conventional common spatial patterns (CSP) algorithm.
The experimental results on two-class and multiclass motor-imagery data from publicly available BCI Competition datasets demonstrate that the proposed computationally efficient method competes closely with filter-bank CSP (FBCSP), and can even outperform the FBCSP if enough training data are available. Furthermore, SCSSP provides us with a simple measure for ranking the discriminant power of extracted spatio-spectral features, which is not possible in FBCSP.
The matrix-variate Gaussian assumption allows the SCSSP method to jointly process the EEG data in both spatial and spectral domains. As a result, compared to the similar solutions in the literature such as FBCSP, the proposed SCSSP method requires significantly lower computations.
The proposed computationally efficient spatio-spectral feature extractor is particularly suitable for applications in which the computational power is limited, such as emerging wearable mobile BCI systems.
特征提取是任何脑机接口(BCI)系统中最重要的步骤之一。特别是,运动想象脑机接口(MI-BCI)的时空谱特征提取在过去十年中一直是多项研究的重点。本文提出了一种名为可分离公共时空谱模式(SCSSP)的新方法,用于提取MI-BCI中具有判别力的时空谱脑电图(EEG)特征。
假设为二分类问题,SCSSP对多频段EEG节律使用异方差矩阵变量高斯模型,并寻找在一种脑任务中方差最大化而在另一种任务中方差最小化的时空谱特征。因此,SCSSP可被视为传统公共空间模式(CSP)算法的时空谱推广。
对来自公开可用的BCI竞赛数据集的两类和多类运动想象数据的实验结果表明,所提出的计算效率高的方法与滤波器组CSP(FBCSP)竞争激烈,并且如果有足够的训练数据,甚至可以优于FBCSP。此外,SCSSP为我们提供了一种简单的方法来对提取的时空谱特征的判别力进行排序,而这在FBCSP中是不可能的。
矩阵变量高斯假设允许SCSSP方法在空间和频谱域联合处理EEG数据。因此,与文献中类似的解决方案(如FBCSP)相比,所提出的SCSSP方法所需的计算量显著更低。
所提出的计算效率高的时空谱特征提取器特别适用于计算能力有限的应用,如新兴的可穿戴移动BCI系统。