Orosz C G, Ferguson R M
Transplantation. 1986 Jan;41(1):69-75. doi: 10.1097/00007890-198601000-00015.
We investigated the radioresistant (1000 rads) suppression of CML generation mediated by alloactivated murine splenocytes. Suppressive cells were generated in MLCs by stimulation of (A X 6R)F1 splenocytes with irradiated C57BL/10 splenocytes. Suppressive cells could lyse targets bearing H-2b alloantigens, but would not lyse parental B10.T(6R) or B10.A targets. Suppressive activity was detected by including the alloactivated (A X 6R)F1 cells in B10.T(6R) anti-B10.A(1R) MLCs. Relative to the suppressive (A X 6R)F1 cells, the B10.A(1R) lymphocytes display both parental and suppressor-inducing alloantigens. In the absence of a suppressive population, B10.A(1R) stimulators cause B10.T(6R) splenocytes to generate cytolytic activity specific for both H-2Db (suppressor-inducing) and H-2Kk (suppressor-borne) target determinants. The irradiated, alloactivated (A X 6R)F1 cells decrease the H-2Db-specific CML generated in this system, thus mediating apparent antigen-specific suppression. However, cytolytic activity concomitantly generated in the same culture against the unrelated H-2Kk target determinants is similarly reduced by the (A X 6R)F1 cells. Thus, radioresistant suppression by alloactivated splenocytes is not necessarily antigen-specific. The irradiated (A X 6R)F1 cells would not suppress the generation of H-2Kk-specific CTL in B10.T(6R) anti-B10.A MLCs. Hence, the irradiated (A X 6R)F1 cells can impede CML generation against third-party alloantigens if, and only if, those alloantigens are coexpressed with suppressor-inducing alloantigens on the stimulator cells in suppressed MLCs. Similar results were also obtained using a different histoincompatible lymphocyte combination. Since the pattern of suppressor specificity and the pattern of CTL specificity were identical and concomitant under these experimental conditions, these data are consistent with the hypothesis that radioresistant suppression by alloactivated lymphocytes can reflect coincidental in vitro cytolytic T cell function in vitro.
我们研究了同种异体激活的小鼠脾细胞介导的对慢性粒细胞白血病(CML)生成的辐射抗性(1000拉德)抑制作用。通过用经照射的C57BL/10脾细胞刺激(A×6R)F1脾细胞,在混合淋巴细胞培养(MLC)中产生抑制细胞。抑制细胞能够裂解带有H-2b同种异体抗原的靶细胞,但不会裂解亲本B10.T(6R)或B10.A靶细胞。通过将同种异体激活的(A×6R)F1细胞纳入B10.T(6R)抗B10.A(1R) MLC中检测抑制活性。相对于抑制性的(A×6R)F1细胞,B10.A(1R)淋巴细胞同时表达亲本和诱导抑制的同种异体抗原。在没有抑制群体的情况下,B10.A(1R)刺激细胞会使B10.T(6R)脾细胞产生针对H-2Db(诱导抑制的)和H-2Kk(携带抑制因子的)靶决定簇的细胞溶解活性。经照射的、同种异体激活的(A×6R)F1细胞会减少该系统中产生的H-2Db特异性CML,从而介导明显的抗原特异性抑制。然而,在同一培养物中同时产生的针对不相关的H-2Kk靶决定簇的细胞溶解活性也同样被(A×6R)F1细胞降低。因此,同种异体激活的脾细胞的辐射抗性抑制不一定是抗原特异性的。经照射的(A×6R)F1细胞不会抑制B10.T(6R)抗B10.A MLC中H-2Kk特异性细胞毒性T淋巴细胞(CTL)的生成。因此,经照射的(A×6R)F1细胞能够阻碍针对第三方同种异体抗原的CML生成,条件是且仅是这些同种异体抗原与抑制诱导同种异体抗原在被抑制的MLC中的刺激细胞上共同表达。使用不同的组织不相容淋巴细胞组合也获得了类似的结果。由于在这些实验条件下抑制特异性模式和CTL特异性模式相同且同时出现,这些数据与以下假设一致,即同种异体激活的淋巴细胞的辐射抗性抑制可以反映体外偶然的细胞溶解T细胞功能。