Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av Prof Lineu Prestes 1374 Lab 148, Cidade Universitária, São Paulo, SP, 05508-000, Brazil.
Faculty of Science and Food Engineering, Technical University of Ambato, Ambato, Ecuador.
J Ind Microbiol Biotechnol. 2018 Mar;45(3):165-173. doi: 10.1007/s10295-018-2007-7. Epub 2018 Jan 19.
Despite the versatility and many advantages of polyhydroxyalkanoates as petroleum-based plastic substitutes, their higher production cost compared to petroleum-based polymers has historically limited their large-scale production. One appealing approach to reducing production costs is to employ less expensive, renewable feedstocks. Xylose, for example is an abundant and inexpensive carbon source derived from hemicellulosic residues abundant in agro-industrial waste (sugarcane bagasse hemicellulosic hydrolysates). In this work, the production of poly-3-hydroxybutyrate P(3HB) from xylose was studied to develop technologies for conversion of agro-industrial waste into high-value chemicals and biopolymers. Specifically, this work elucidates the organization of the xylose assimilation operon of Burkholderia sacchari, a non-model bacterium with high capacity for P(3HB) accumulation. Overexpression of endogenous xylose isomerase and xylulokinase genes was successfully assessed, improving both specific growth rate and P(3HB) production. Compared to control strain (harboring pBBR1MCS-2), xylose utilization in the engineered strain was substantially improved with 25% increase in specific growth rate, 34% increase in P(3HB) production, and the highest P(3HB) yield from xylose reported to date for B. sacchari (Y = 0.35 g/g). This study highlights that xylA and xylB overexpression is an effective strategy to improve xylose utilization and P(3HB) production in B. sacchari.
尽管聚羟基烷酸酯作为石油基塑料替代品具有多功能性和许多优点,但与石油基聚合物相比,其生产成本较高,这在历史上限制了其大规模生产。降低生产成本的一种有吸引力的方法是使用更便宜、可再生的原料。例如,木糖是一种丰富且廉价的碳源,来源于农业工业废物(甘蔗渣半纤维素水解物)中的半纤维素残留物。在这项工作中,研究了从木糖生产聚-3-羟基丁酸酯 P(3HB),以开发将农业工业废物转化为高价值化学品和生物聚合物的技术。具体来说,这项工作阐明了伯克霍尔德氏菌 sacchari 木糖同化操纵子的组织,该菌具有积累 P(3HB)的高能力,这是非模式细菌。成功评估了内源性木糖异构酶和木酮糖激酶基因的过表达,提高了比生长速率和 P(3HB)产量。与对照菌株(携带 pBBR1MCS-2)相比,工程菌株中的木糖利用得到了实质性的提高,比生长速率提高了 25%,P(3HB)产量提高了 34%,这是迄今为止报道的伯克霍尔德氏菌 sacchari 从木糖生产 P(3HB)的最高产率(Y=0.35 g/g)。本研究表明,木糖 A 和木糖 B 的过表达是提高伯克霍尔德氏菌 sacchari 木糖利用和 P(3HB)生产的有效策略。