Wang Peilin, Si Huan, Li Chenhui, Xu Zhongping, Guo Huiming, Jin Shuangxia, Cheng Hongmei
Academician Workstation, National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China.
Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China.
Plant Biotechnol J. 2025 Jun;23(6):2034-2058. doi: 10.1111/pbi.70028. Epub 2025 Mar 7.
Regeneration represents a fundamental biological process wherein an organism's tissues or organs repair and replace themselves following damage or environmental stress. In plant systems, injured tree branches can regenerate adventitious buds and develop new crowns through propagation techniques like cuttings and canopy pruning, while transgenic plants emerge via tissue culture in genetic engineering processes intimately connected to plant regeneration mechanisms. The advancement of plant regeneration technology is critical for addressing complex and dynamic climate challenges, ultimately ensuring global agricultural sustainability. This review comprehensively synthesizes the latest genetic transformation technologies, including transformation systems across woody, herbaceous and algal species, organellar genetic modifications, crucial regeneration factors facilitating Agrobacterium-mediated transformations, the intricate hormonal networks regulating plant regeneration, comparative analyses of transient transformation approaches and marker gene dynamics throughout transformation processes. Ultimately, the review offers novel perspectives on current transformation bottlenecks and proposes future research trajectories.
再生是一个基本的生物学过程,在这个过程中,生物体的组织或器官在受到损伤或环境压力后会自我修复和替换。在植物系统中,受伤的树枝可以再生不定芽,并通过扦插和树冠修剪等繁殖技术发育出新的树冠,而转基因植物则是在与植物再生机制密切相关的基因工程过程中通过组织培养产生的。植物再生技术的进步对于应对复杂多变的气候挑战至关重要,最终确保全球农业的可持续性。本综述全面综合了最新的遗传转化技术,包括木本、草本和藻类物种的转化系统、细胞器遗传修饰、促进农杆菌介导转化的关键再生因子、调节植物再生的复杂激素网络、瞬时转化方法的比较分析以及整个转化过程中的标记基因动态。最终,该综述为当前的转化瓶颈提供了新的视角,并提出了未来的研究方向。