Mohr Christopher, Friedrich Andreas, Wojnar David, Kenar Erhan, Polatkan Aydin Can, Codrea Marius Cosmin, Czemmel Stefan, Kohlbacher Oliver, Nahnsen Sven
Applied Bioinformatics, Center for Bioinformatics Tübingen, University of Tübingen, Sand 14, 72076 Tübingen, Germany.
Quantitative Biology Center (QBiC), University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
PLoS One. 2018 Jan 19;13(1):e0191603. doi: 10.1371/journal.pone.0191603. eCollection 2018.
Modern biomedical research aims at drawing biological conclusions from large, highly complex biological datasets. It has become common practice to make extensive use of high-throughput technologies that produce big amounts of heterogeneous data. In addition to the ever-improving accuracy, methods are getting faster and cheaper, resulting in a steadily increasing need for scalable data management and easily accessible means of analysis. We present qPortal, a platform providing users with an intuitive way to manage and analyze quantitative biological data. The backend leverages a variety of concepts and technologies, such as relational databases, data stores, data models and means of data transfer, as well as front-end solutions to give users access to data management and easy-to-use analysis options. Users are empowered to conduct their experiments from the experimental design to the visualization of their results through the platform. Here, we illustrate the feature-rich portal by simulating a biomedical study based on publically available data. We demonstrate the software's strength in supporting the entire project life cycle. The software supports the project design and registration, empowers users to do all-digital project management and finally provides means to perform analysis. We compare our approach to Galaxy, one of the most widely used scientific workflow and analysis platforms in computational biology. Application of both systems to a small case study shows the differences between a data-driven approach (qPortal) and a workflow-driven approach (Galaxy). qPortal, a one-stop-shop solution for biomedical projects offers up-to-date analysis pipelines, quality control workflows, and visualization tools. Through intensive user interactions, appropriate data models have been developed. These models build the foundation of our biological data management system and provide possibilities to annotate data, query metadata for statistics and future re-analysis on high-performance computing systems via coupling of workflow management systems. Integration of project and data management as well as workflow resources in one place present clear advantages over existing solutions.
现代生物医学研究旨在从庞大、高度复杂的生物数据集中得出生物学结论。广泛使用能产生大量异构数据的高通量技术已成为常见做法。除了准确性不断提高外,方法也变得更快、更便宜,这导致对可扩展数据管理和易于访问的分析手段的需求稳步增加。我们展示了qPortal,这是一个为用户提供直观方式来管理和分析定量生物数据的平台。后端利用了各种概念和技术,如关系数据库、数据存储、数据模型和数据传输手段,以及前端解决方案,以便用户能够进行数据管理并使用易于使用的分析选项。用户能够通过该平台开展从实验设计到结果可视化的整个实验过程。在此,我们通过基于公开可用数据模拟生物医学研究来说明这个功能丰富的平台。我们展示了该软件在支持整个项目生命周期方面的优势。该软件支持项目设计和注册,使用户能够进行全数字化项目管理,并最终提供进行分析的手段。我们将我们的方法与Galaxy进行比较,Galaxy是计算生物学中使用最广泛的科学工作流程和分析平台之一。将这两个系统应用于一个小案例研究,展示了数据驱动方法(qPortal)和工作流程驱动方法(Galaxy)之间的差异。qPortal作为生物医学项目的一站式解决方案,提供了最新的分析管道、质量控制工作流程和可视化工具。通过密集的用户交互,开发了合适的数据模型。这些模型构成了我们生物数据管理系统的基础,并提供了注释数据、查询元数据以进行统计以及通过工作流管理系统耦合在高性能计算系统上进行未来重新分析的可能性。将项目和数据管理以及工作流资源集成在一个地方,相对于现有解决方案具有明显优势。