Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony Street 43, 1083 Budapest, Hungary.
Curr Opin Neurobiol. 2018 Aug;51:8-15. doi: 10.1016/j.conb.2018.01.001. Epub 2018 Jan 30.
Research over the past half a century has revealed remarkable diversity among chemical synapses of the CNS. The structural, functional and molecular diversity of synapses was mainly concluded from studying different synapses in distinct brain regions and preparations. It is not surprising that synapses made by molecularly distinct pre-synaptic and post-synaptic cells display different morphological and functional properties with distinct underlying molecular mechanisms. However, synapses made by a single presynaptic cell onto distinct types of postsynaptic cells, or distinct presynaptic inputs onto a single postsynaptic cell, also show remarkable heterogeneity. Here, by reviewing recent experiments, I suggest that robust functional diversity can be achieved by building synapses from the same molecules, but using different numbers, densities and nanoscale arrangements.
在过去的半个世纪里,研究揭示了中枢神经系统化学突触之间显著的多样性。突触的结构、功能和分子多样性主要是通过研究不同脑区和不同准备条件下的不同突触得出的。由分子上不同的前突触和后突触细胞形成的突触表现出不同的形态和功能特性,并具有不同的潜在分子机制,这并不奇怪。然而,由单个前突触细胞形成的突触与不同类型的后突触细胞,或不同的前突触输入到单个后突触细胞,也显示出显著的异质性。在这里,通过回顾最近的实验,我提出,通过使用不同的数量、密度和纳米级排列来构建相同的分子突触,可以实现强大的功能多样性。