Suppr超能文献

数据驱动的突触分类揭示了谷氨酸受体多样性的逻辑。

Data-driven synapse classification reveals a logic of glutamate receptor diversity.

作者信息

Micheva Kristina D, Simhal Anish K, Schardt Jenna, Smith Stephen J, Weinberg Richard J, Owen Scott F

机构信息

Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305.

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065.

出版信息

bioRxiv. 2025 Jan 14:2024.12.11.628056. doi: 10.1101/2024.12.11.628056.

Abstract

The rich diversity of synapses facilitates the capacity of neural circuits to transmit, process and store information. We used multiplex super-resolution proteometric imaging through array tomography to define features of single synapses in mouse neocortex. We find that glutamatergic synapses cluster into subclasses that parallel the distinct biochemical and functional categories of receptor subunits: GluA1/4, GluA2/3 and GluN1/GluN2B. Two of these subclasses align with physiological expectations based on synaptic plasticity: large AMPAR-rich synapses may represent potentiated synapses, whereas small NMDAR-rich synapses suggest "silent" synapses. The NMDA receptor content of large synapses correlates with spine neck diameter, and thus the potential for coupling to the parent dendrite. Overall, ultrastructural features predict receptor content of synapses better than parent neuron identity does, suggesting synapse subclasses act as fundamental elements of neuronal circuits. No barriers prevent future generalization of this approach to other species, or to study of human disorders and therapeutics.

摘要

突触的丰富多样性促进了神经回路传递、处理和存储信息的能力。我们通过阵列断层扫描进行多重超分辨率蛋白质组学成像,以确定小鼠新皮质中单个突触的特征。我们发现,谷氨酸能突触聚集成亚类,这些亚类与受体亚基不同的生化和功能类别平行:GluA1/4、GluA2/3和GluN1/GluN2B。其中两个亚类与基于突触可塑性的生理预期相符:富含大量AMPA受体的大突触可能代表增强的突触,而富含NMDA受体的小突触则提示“沉默”突触。大突触中的NMDA受体含量与棘突颈部直径相关,因此与与母树突耦合的潜力相关。总体而言,超微结构特征比母神经元身份更能预测突触的受体含量,这表明突触亚类是神经回路的基本组成部分。没有障碍会阻止未来将这种方法推广到其他物种,或用于研究人类疾病和治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40bd/11745086/28f646dc26ae/nihpp-2024.12.11.628056v2-f0008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验