Deparment of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China.
Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, United States.
Redox Biol. 2018 May;15:418-434. doi: 10.1016/j.redox.2018.01.004. Epub 2018 Jan 9.
Endothelial cells (ECs) constitute the defensive barrier of vasculature, which maintains the vascular homeostasis. Mitochondrial oxidative stress (mitoOS) in ECs significantly affects the initiation and progression of vascular diseases. The higher serum thyroid stimulating hormone (TSH) level is being recognized as a nonconventional risk factor responsible for the increased risk of cardiovascular diseases in subclinical hypothyroidism (SCH). However, effects and underlying mechanisms of elevated TSH on ECs are still ambiguous. We sought to investigate whether cyclophilin D (CypD), emerging as a crucial mediator in mitoOS, regulates effects of TSH on ECs.
SCH patients with TSH > = 10mIU/L showed a positive correlation between serum TSH and endothelin-1 levels. When TSH levels declined to normal in these subjects after levothyroxine therapy, serum endothelin-1 levels were significantly reduced. Supplemented with exogenous thyroxine to keep normal thyroid hormones, thyroid-specific TSH receptor (TSHR)-knockout mice with injection of exogenous TSH exhibited elevated serum TSH levels, significant endothelial oxidative injuries and disturbed endothelium-dependent vasodilation. However, Tshr mice resisted to TSH-impaired vasotonia. We further confirmed that elevated TSH triggered excessive mitochondrial permeability transition pore (mPTP) opening and mitochondrial oxidative damages in mouse aorta, as well as in cultured ECs. Genetic or pharmacological inhibition of CypD (the key regulator for mPTP opening) attenuated TSH-induced mitochondrial oxidative damages and further rescued endothelial functions. Finally, we confirmed that elevated TSH could activate CypD by enhancing CypD acetylation via inhibiting adenosine monophosphate-activated protein kinase/sirtuin-3 signaling pathway in ECs.
These findings reveal that elevated TSH triggers mitochondrial perturbations in ECs and provide insights that blocking mitochondrial CypD enhances the defensive ability of ECs under TSH exposure.
内皮细胞(ECs)构成血管的防御屏障,维持血管的稳态。ECs 中的线粒体氧化应激(mitoOS)显著影响血管疾病的发生和进展。较高的血清促甲状腺激素(TSH)水平被认为是亚临床甲状腺功能减退症(SCH)中导致心血管疾病风险增加的非传统危险因素。然而,升高的 TSH 对 ECs 的影响及其潜在机制仍不清楚。我们试图研究环孢素 D(CypD)是否作为 mitoOS 中的关键介质调节 TSH 对 ECs 的作用。
TSH > = 10mIU/L 的 SCH 患者的血清 TSH 与内皮素-1 水平呈正相关。在这些患者接受左甲状腺素治疗后 TSH 水平降至正常后,血清内皮素-1 水平显著降低。用外源性甲状腺素补充甲状腺激素,注射外源性 TSH 的甲状腺特异性 TSH 受体(TSHR)敲除小鼠表现出升高的血清 TSH 水平、显著的内皮氧化损伤和内皮依赖性血管舒张功能障碍。然而,Tshr 小鼠抵抗 TSH 引起的血管张力障碍。我们进一步证实,升高的 TSH 可触发小鼠主动脉和培养的 ECs 中过度的线粒体通透性转换孔(mPTP)开放和线粒体氧化损伤。CypD 的遗传或药理学抑制(mPTP 开放的关键调节剂)可减轻 TSH 诱导的线粒体氧化损伤,并进一步挽救内皮功能。最后,我们证实升高的 TSH 可通过抑制 AMP 激活的蛋白激酶/沉默调节因子-3 信号通路增强 CypD 乙酰化来激活 CypD,从而在 ECs 中激活 CypD。
这些发现表明,升高的 TSH 可引发 ECs 中线粒体的改变,并提供了一些见解,即阻断线粒体 CypD 可增强 ECs 在 TSH 暴露下的防御能力。