Suppr超能文献

线粒体通透性转换孔调节内皮细胞生物能量代谢和血管生成。

The mitochondrial permeability transition pore regulates endothelial bioenergetics and angiogenesis.

作者信息

Marcu Raluca, Kotha Surya, Zhi Zhongwei, Qin Wan, Neeley Christopher K, Wang Ruikang K, Zheng Ying, Hawkins Brian J

机构信息

From the Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine (R.M., C.K.N., B.J.H.), Bioengineering (R.M., S.K., Z.Z., W.Q., R.K.W.), and Ophthalmology (R.K.W.), University of Washington, Seattle; and Department of General Surgery, University of Michigan, Ann Arbor (C.K.N.).

出版信息

Circ Res. 2015 Apr 10;116(8):1336-45. doi: 10.1161/CIRCRESAHA.116.304881. Epub 2015 Feb 26.

Abstract

RATIONALE

The mitochondrial permeability transition pore is a well-known initiator of cell death that is increasingly recognized as a physiological modulator of cellular metabolism.

OBJECTIVE

We sought to identify how the genetic deletion of a key regulatory subunit of the mitochondrial permeability transition pore, cyclophilin D (CypD), influenced endothelial metabolism and intracellular signaling.

METHODS AND RESULTS

In cultured primary human endothelial cells, genetic targeting of CypD using siRNA or shRNA resulted in a constitutive increase in mitochondrial matrix Ca(2+) and reduced nicotinamide adenine dinucleotide (NADH). Elevated matrix NADH, in turn, diminished the cytosolic NAD(+)/NADH ratio and triggered a subsequent downregulation of the NAD(+)-dependent deacetylase sirtuin 1 (SIRT1). Downstream of SIRT1, CypD-deficient endothelial cells exhibited reduced phosphatase and tensin homolog expression and a constitutive rise in the phosphorylation of angiogenic Akt. Similar changes in SIRT1, phosphatase and tensin homolog, and Akt were also noted in the aorta and lungs of CypD knockout mice. Functionally, CypD-deficient endothelial cells and aortic tissue from CypD knockout mice exhibited a dramatic increase in angiogenesis at baseline and when exposed to vascular endothelial growth factor. The NAD(+) precursor nicotinamide mononucleotide restored the cellular NAD(+)/NADH ratio and normalized the CypD-deficient phenotype. CypD knockout mice also presented accelerated wound healing and increased neovascularization on tissue injury as monitored by optical microangiography.

CONCLUSIONS

Our study reveals the importance of the mitochondrial permeability transition pore in the regulation of endothelial mitochondrial metabolism and vascular function. The mitochondrial regulation of SIRT1 has broad implications in the epigenetic regulation of endothelial phenotype.

摘要

理论依据

线粒体通透性转换孔是一种众所周知的细胞死亡启动因子,越来越被认为是细胞代谢的生理调节因子。

目的

我们试图确定线粒体通透性转换孔的关键调节亚基亲环蛋白D(CypD)的基因缺失如何影响内皮细胞代谢和细胞内信号传导。

方法与结果

在培养的原代人内皮细胞中,使用小干扰RNA(siRNA)或短发夹RNA(shRNA)对CypD进行基因靶向,导致线粒体基质Ca2+组成性增加,烟酰胺腺嘌呤二核苷酸(NADH)减少。升高的基质NADH反过来又降低了胞质NAD+/NADH比值,并引发了随后依赖NAD+的去乙酰化酶沉默调节蛋白1(SIRT1)的下调。在SIRT1的下游,CypD缺陷的内皮细胞表现出磷酸酶和张力蛋白同源物表达降低,以及促血管生成的Akt磷酸化组成性升高。在CypD基因敲除小鼠的主动脉和肺中也观察到SIRT1、磷酸酶和张力蛋白同源物以及Akt的类似变化。在功能上,CypD缺陷的内皮细胞和来自CypD基因敲除小鼠的主动脉组织在基线时以及暴露于血管内皮生长因子时,血管生成显著增加。NAD+前体烟酰胺单核苷酸恢复了细胞NAD+/NADH比值,并使CypD缺陷表型正常化。通过光学微血管造影监测发现,CypD基因敲除小鼠在组织损伤时也表现出伤口愈合加速和新血管形成增加。

结论

我们的研究揭示了线粒体通透性转换孔在内皮细胞线粒体代谢和血管功能调节中的重要性。SIRT1的线粒体调节在内皮细胞表型的表观遗传调节中具有广泛的意义。

相似文献

1
The mitochondrial permeability transition pore regulates endothelial bioenergetics and angiogenesis.
Circ Res. 2015 Apr 10;116(8):1336-45. doi: 10.1161/CIRCRESAHA.116.304881. Epub 2015 Feb 26.
2
Blocking mitochondrial cyclophilin D ameliorates TSH-impaired defensive barrier of artery.
Redox Biol. 2018 May;15:418-434. doi: 10.1016/j.redox.2018.01.004. Epub 2018 Jan 9.
3
Involvement of the mitochondrial permeability transition pore in chronic ethanol-mediated liver injury in mice.
Am J Physiol Gastrointest Liver Physiol. 2014 Feb 15;306(4):G265-77. doi: 10.1152/ajpgi.00278.2013. Epub 2013 Dec 19.
4
SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells.
Circ Res. 2010 Apr 30;106(8):1384-93. doi: 10.1161/CIRCRESAHA.109.215483. Epub 2010 Mar 4.
6
Mitochondrial cyclophilin-D as a critical mediator of ischaemic preconditioning.
Cardiovasc Res. 2010 Oct 1;88(1):67-74. doi: 10.1093/cvr/cvq113. Epub 2010 Apr 16.
8
Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore.
J Biol Chem. 2011 Nov 18;286(46):40184-92. doi: 10.1074/jbc.M111.243469. Epub 2011 Sep 19.
9
Estrogen receptor beta modulates permeability transition in brain mitochondria.
Biochim Biophys Acta Bioenerg. 2018 Jun;1859(6):423-433. doi: 10.1016/j.bbabio.2018.03.006. Epub 2018 Mar 14.
10
Cyclophilin D gene ablation protects mice from ischemic renal injury.
Am J Physiol Renal Physiol. 2009 Sep;297(3):F749-59. doi: 10.1152/ajprenal.00239.2009. Epub 2009 Jun 24.

引用本文的文献

2
Recent Insights Concerning Autophagy and Endothelial Cell Nitric Oxide Generation.
Curr Opin Physiol. 2022 Dec;30. doi: 10.1016/j.cophys.2022.100614. Epub 2022 Nov 4.
3
Role of the mitochondrial protein cyclophilin D in skin wound healing and collagen secretion.
JCI Insight. 2024 Apr 2;9(9):e169213. doi: 10.1172/jci.insight.169213.
4
Potential enhancement of post-stroke angiogenic response by targeting the oligomeric aggregation of p53 protein.
Front Cell Neurosci. 2023 Jul 18;17:1193362. doi: 10.3389/fncel.2023.1193362. eCollection 2023.
6
Mitochondria in health, disease, and aging.
Physiol Rev. 2023 Oct 1;103(4):2349-2422. doi: 10.1152/physrev.00058.2021. Epub 2023 Apr 6.
7
Extracellular cyclophilins A and C induce dysfunction of pancreatic microendothelial cells.
Front Physiol. 2022 Oct 5;13:980232. doi: 10.3389/fphys.2022.980232. eCollection 2022.
8
Mitochondrial Respiration Inhibition Suppresses Papillary Thyroid Carcinoma PI3K/Akt/FoxO1/Cyclin D1 Pathway.
Front Oncol. 2022 Jul 5;12:900444. doi: 10.3389/fonc.2022.900444. eCollection 2022.
9
Mitochondria Lead the Way: Mitochondrial Dynamics and Function in Cellular Movements in Development and Disease.
Front Cell Dev Biol. 2022 Feb 2;9:781933. doi: 10.3389/fcell.2021.781933. eCollection 2021.
10
Therapeutic Potential of Emerging NAD+-Increasing Strategies for Cardiovascular Diseases.
Antioxidants (Basel). 2021 Dec 3;10(12):1939. doi: 10.3390/antiox10121939.

本文引用的文献

2
Control of vessel sprouting by genetic and metabolic determinants.
Trends Endocrinol Metab. 2013 Dec;24(12):589-96. doi: 10.1016/j.tem.2013.08.006. Epub 2013 Sep 27.
3
Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure.
Cell Metab. 2013 Aug 6;18(2):239-50. doi: 10.1016/j.cmet.2013.07.002.
4
Role of PFKFB3-driven glycolysis in vessel sprouting.
Cell. 2013 Aug 1;154(3):651-63. doi: 10.1016/j.cell.2013.06.037.
6
Cyclophilin D extramitochondrial signaling controls cell cycle progression and chemokine-directed cell motility.
J Biol Chem. 2013 Feb 22;288(8):5553-61. doi: 10.1074/jbc.M112.433045. Epub 2013 Jan 9.
7
CypD(-/-) hearts have altered levels of proteins involved in Krebs cycle, branch chain amino acid degradation and pyruvate metabolism.
J Mol Cell Cardiol. 2013 Mar;56:81-90. doi: 10.1016/j.yjmcc.2012.12.004. Epub 2012 Dec 19.
9
SIRT1 promotes tumorigenesis of hepatocellular carcinoma through PI3K/PTEN/AKT signaling.
Oncol Rep. 2012 Jul;28(1):311-8. doi: 10.3892/or.2012.1788. Epub 2012 Apr 26.
10
Sirtuins as regulators of metabolism and healthspan.
Nat Rev Mol Cell Biol. 2012 Mar 7;13(4):225-238. doi: 10.1038/nrm3293.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验