Suppr超能文献

嵌合体网格在狭窄管道内细胞运动和聚集建模中的应用。

Application of Chimera grid to modelling cell motion and aggregation in a narrow tube.

作者信息

Chung B, Johnson P C, Popel A S

机构信息

Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, U.S.A.

Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, U.S.A.

出版信息

Int J Numer Methods Fluids. 2007 Jan 10;53(1):105-128. doi: 10.1002/fld.1251. Epub 2006 Jun 19.

Abstract

A computational scheme using the Chimera grid method is presented for simulation of three-dimensional motion and aggregation of two red blood cells (RBCs) in a narrow tube. The cells are modelled as rigid ellipsoidal particles; the computational scheme is applicable to deformable fluid-filled particles. Attractive energy between two RBCs is modelled by a depletion interaction theory and used for simulating aggregation of two cells. Through the simulation, we show that the Chimera grid method is applicable to the simulation of three-dimensional motion and aggregation of multiple RBCs in a microvessel and microvascular network.

摘要

提出了一种使用嵌合体网格方法的计算方案,用于模拟狭窄管中两个红细胞(RBC)的三维运动和聚集。细胞被建模为刚性椭球形颗粒;该计算方案适用于充满流体的可变形颗粒。两个红细胞之间的吸引力通过耗竭相互作用理论建模,并用于模拟两个细胞的聚集。通过模拟,我们表明嵌合体网格方法适用于模拟微血管和微血管网络中多个红细胞的三维运动和聚集。

相似文献

1
Application of Chimera grid to modelling cell motion and aggregation in a narrow tube.
Int J Numer Methods Fluids. 2007 Jan 10;53(1):105-128. doi: 10.1002/fld.1251. Epub 2006 Jun 19.
2
Computational fluid dynamics of aggregating red blood cells in postcapillary venules.
Comput Methods Biomech Biomed Engin. 2009 Aug;12(4):385-97. doi: 10.1080/10255840802624718.
3
SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
Biomed Eng Online. 2016 Dec 28;15(Suppl 2):161. doi: 10.1186/s12938-016-0256-0.
4
Large scale simulation of red blood cell aggregation in shear flows.
J Biomech. 2013 Jul 26;46(11):1810-7. doi: 10.1016/j.jbiomech.2013.05.010. Epub 2013 Jun 27.
6
An Investigation on the Aggregation and Rheodynamics of Human Red Blood Cells Using High Performance Computations.
Scientifica (Cairo). 2017;2017:6524156. doi: 10.1155/2017/6524156. Epub 2017 Apr 4.
7
Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow.
J Biomech Eng. 2005 Dec;127(7):1070-80. doi: 10.1115/1.2112907.
8
Computational analysis of dynamic interaction of two red blood cells in a capillary.
Cell Biochem Biophys. 2014 Jul;69(3):673-80. doi: 10.1007/s12013-014-9852-4.
9
A review of numerical methods for red blood cell flow simulation.
Comput Methods Biomech Biomed Engin. 2015;18(2):130-40. doi: 10.1080/10255842.2013.783574. Epub 2013 Apr 14.
10
Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
Ann Biomed Eng. 2008 Jun;36(6):905-20. doi: 10.1007/s10439-008-9478-z. Epub 2008 Mar 11.

引用本文的文献

1
Margination and adhesion dynamics of tumor cells in a real microvascular network.
PLoS Comput Biol. 2021 Feb 19;17(2):e1008746. doi: 10.1371/journal.pcbi.1008746. eCollection 2021 Feb.
2
Computational fluid dynamics of aggregating red blood cells in postcapillary venules.
Comput Methods Biomech Biomed Engin. 2009 Aug;12(4):385-97. doi: 10.1080/10255840802624718.
3
Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows.
Microvasc Res. 2009 May;77(3):265-72. doi: 10.1016/j.mvr.2009.01.010. Epub 2009 Feb 4.
4
Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method.
J Biomech. 2008;41(1):47-55. doi: 10.1016/j.jbiomech.2007.07.020. Epub 2007 Sep 20.

本文引用的文献

1
Large deformation of red blood cell ghosts in a simple shear flow.
Phys Fluids (1994). 1998 Aug;10(8):1834-1845. doi: 10.1063/1.869703. Epub 1998 Jul 1.
2
Microcirculation and Hemorheology.
Annu Rev Fluid Mech. 2005 Jan 1;37:43-69. doi: 10.1146/annurev.fluid.37.042604.133933.
3
Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow.
J Biomech Eng. 2005 Dec;127(7):1070-80. doi: 10.1115/1.2112907.
4
Particulate nature of blood determines macroscopic rheology: a 2-D lattice Boltzmann analysis.
Biophys J. 2005 Mar;88(3):1635-45. doi: 10.1529/biophysj.104.051151. Epub 2004 Dec 21.
5
Aggregate formation of erythrocytes in postcapillary venules.
Am J Physiol Heart Circ Physiol. 2005 Feb;288(2):H584-90. doi: 10.1152/ajpheart.00690.2004. Epub 2004 Sep 30.
7
Numerical simulation of the flow-induced deformation of red blood cells.
Ann Biomed Eng. 2003 Nov;31(10):1194-205. doi: 10.1114/1.1617985.
8
Relationship between erythrocyte aggregate size and flow rate in skeletal muscle venules.
Am J Physiol Heart Circ Physiol. 2004 Jan;286(1):H113-20. doi: 10.1152/ajpheart.00587.2003. Epub 2003 Sep 11.
9
Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis.
Biophys J. 2003 Jul;85(1):208-22. doi: 10.1016/S0006-3495(03)74467-1.
10
Depletion-mediated red blood cell aggregation in polymer solutions.
Biophys J. 2002 Nov;83(5):2482-90. doi: 10.1016/S0006-3495(02)75259-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验