Suppr超能文献

使用流式细胞术对细菌生长和分裂进行基于个体的随机建模。

Stochastic Individual-Based Modeling of Bacterial Growth and Division Using Flow Cytometry.

作者信息

García Míriam R, Vázquez José A, Teixeira Isabel G, Alonso Antonio A

机构信息

Bioprocess Engineering Group, Marine Research Institute-Spanish National Research Council (IIM-CSIC), Vigo, Spain.

Group of Recycling and Valorisation of Waste Materials, Marine Research Institute-Spanish National Research Council (IIM-CSIC), Vigo, Spain.

出版信息

Front Microbiol. 2018 Jan 5;8:2626. doi: 10.3389/fmicb.2017.02626. eCollection 2017.

Abstract

A realistic description of the variability in bacterial growth and division is critical to produce reliable predictions of safety risks along the food chain. Individual-based modeling of bacteria provides the theoretical framework to deal with this variability, but it requires information about the individual behavior of bacteria inside populations. In this work, we overcome this problem by estimating the individual behavior of bacteria from population statistics obtained with flow cytometry. For this objective, a stochastic individual-based modeling framework is defined based on standard assumptions during division and exponential growth. The unknown single-cell parameters required for running the individual-based modeling simulations, such as cell size growth rate, are estimated from the flow cytometry data. Instead of using directly the individual-based model, we make use of a modified Fokker-Plank equation. This only equation simulates the population statistics in function of the unknown single-cell parameters. We test the validity of the approach by modeling the growth and division of within the exponential phase. Estimations reveal the statistics of cell growth and division using only data from flow cytometry at a given time. From the relationship between the mother and daughter volumes, we also predict that divide into two successive parallel planes.

摘要

对细菌生长和分裂变异性进行现实描述对于沿食物链产生可靠的安全风险预测至关重要。基于个体的细菌建模提供了处理这种变异性的理论框架,但它需要有关群体内部细菌个体行为的信息。在这项工作中,我们通过从流式细胞术获得的群体统计数据估计细菌的个体行为来克服这个问题。为此,基于分裂和指数生长期间的标准假设定义了一个基于个体的随机建模框架。运行基于个体的建模仿真所需的未知单细胞参数,如细胞大小生长速率,是从流式细胞术数据中估计出来的。我们没有直接使用基于个体的模型,而是使用了一个修正的福克 - 普朗克方程。这个单一方程根据未知的单细胞参数模拟群体统计数据。我们通过对指数期内的生长和分裂进行建模来测试该方法的有效性。估计仅使用给定时间的流式细胞术数据揭示了细胞生长和分裂的统计数据。从母细胞和子细胞体积之间的关系,我们还预测会分成两个连续的平行平面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4d0/5760514/bed40021c985/fmicb-08-02626-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验