Suppr超能文献

用于具有增强热稳定性的钙钛矿太阳能电池的不可渗透电子萃取层的氧化锡的空间大气压力原子层沉积。

Spatial Atmospheric Pressure Atomic Layer Deposition of Tin Oxide as an Impermeable Electron Extraction Layer for Perovskite Solar Cells with Enhanced Thermal Stability.

机构信息

RUBION, University of Bochum , Universitätsstr. 150, 44801 Bochum, Germany.

出版信息

ACS Appl Mater Interfaces. 2018 Feb 14;10(6):6006-6013. doi: 10.1021/acsami.7b17701. Epub 2018 Feb 2.

Abstract

Despite the notable success of hybrid halide perovskite-based solar cells, their long-term stability is still a key-issue. Aside from optimizing the photoactive perovskite, the cell design states a powerful lever to improve stability under various stress conditions. Dedicated electrically conductive diffusion barriers inside the cell stack, that counteract the ingress of moisture and prevent the migration of corrosive halogen species, can substantially improve ambient and thermal stability. Although atomic layer deposition (ALD) is excellently suited to prepare such functional layers, ALD suffers from the requirement of vacuum and only allows for a very limited throughput. Here, we demonstrate for the first time spatial ALD-grown SnO at atmospheric pressure as impermeable electron extraction layers for perovskite solar cells. We achieve optical transmittance and electrical conductivity similar to those in SnO grown by conventional vacuum-based ALD. A low deposition temperature of 80 °C and a high substrate speed of 2.4 m min yield SnO layers with a low water vapor transmission rate of ∼10 gm day (at 60 °C/60% RH). Thereby, in perovskite solar cells, dense hybrid Al:ZnO/SnO electron extraction layers are created that are the key for stable cell characteristics beyond 1000 h in ambient air and over 3000 h at 60 °C. Most notably, our work of introducing spatial ALD at atmospheric pressure paves the way to the future roll-to-roll manufacturing of stable perovskite solar cells.

摘要

尽管混合卤化物钙钛矿基太阳能电池取得了显著的成功,但它们的长期稳定性仍然是一个关键问题。除了优化光活性钙钛矿之外,电池设计是提高各种应力条件下稳定性的有力手段。在电池堆栈内部专门设计的导电扩散阻挡层可以阻止水分进入并防止腐蚀性卤化物的迁移,从而显著提高环境和热稳定性。虽然原子层沉积(ALD)非常适合制备这种功能层,但 ALD 受到真空的要求限制,并且只允许非常有限的吞吐量。在这里,我们首次展示了在大气压下空间 ALD 生长的 SnO 作为钙钛矿太阳能电池不可渗透的电子提取层。我们实现了与通过传统真空基 ALD 生长的 SnO 相似的光学透过率和电导率。低沉积温度 80°C 和高基板速度 2.4 m min 可产生水蒸汽传输率约为 10 gm day(在 60°C/60%RH 下)的 SnO 层。因此,在钙钛矿太阳能电池中,形成了致密的混合 Al:ZnO/SnO 电子提取层,这是在环境空气中稳定运行超过 1000 小时和在 60°C 下稳定运行超过 3000 小时的关键。值得注意的是,我们在大气压下引入空间 ALD 的工作为未来稳定的钙钛矿太阳能电池的卷对卷制造铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验