Suppr超能文献

用于高效和稳定的钙钛矿太阳能电池的低温原子层沉积金属氧化物层在恶劣环境条件下。

Low-Temperature Atomic Layer Deposition of Metal Oxide Layers for Perovskite Solar Cells with High Efficiency and Stability under Harsh Environmental Conditions.

机构信息

Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China.

出版信息

ACS Appl Mater Interfaces. 2018 Jul 18;10(28):23928-23937. doi: 10.1021/acsami.8b07346. Epub 2018 Jul 9.

Abstract

Rapid progress achieved on perovskite solar cells raises the expectation for their further development toward practical applications. Moisture sensitivity of perovskite materials is one of the major obstacles which limits the long-term durability of the perovskite solar cells, especially in outdoor operation where rainfall and water accumulation on the solar panels often occur. Micro/nanopinholes within the functional layers of the devices usually lead to water vapor penetration, thus subsequent decomposition of perovskites, and finally poor device performance and shortened operational lifetime. In this work, low-temperature atomic layer deposition (ALD) technique was utilized to incorporate pinhole-free metal oxide layers (TiO and AlO) into an inverted perovskite solar cell consisting of indium tin oxide/NiO/perovskite/PCBM/TiO/Ag. The interface properties between the inserted TiO layer and the perovskite layer were investigated by X-ray photoelectron spectroscopy. The results showed that TiO ALD fabrication process had made negligible degradation to the perovskite layer. The TiO layer can significantly reduce interfacial charge recombination loss, improve interfacial contact, and enhance water resistance. A maximum power conversion efficiency (PCE) of 18.3% was achieved for devices with TiO interface layers. A stacked AlO encapsulation layer was designed and deposited on top of the devices to further improve device stability under harsh environmental conditions. The encapsulated devices with the best performance retained 97% of the initial PCE after being stored in ambient condition for a thousand hours. They also showed great water resistance, and no significant degradation in terms of PCE and photocurrent of the devices was observed after they were immersed in deionized water for as long as 2 h. Our approach offers a promising way of developing highly efficient and stable perovskite solar cells under real-world operational conditions.

摘要

钙钛矿太阳能电池取得的快速进展提高了人们对其进一步开发应用的期望。钙钛矿材料的湿度敏感性是限制其长期稳定性的主要障碍之一,特别是在户外操作中,降雨和太阳能电池板上的积水经常发生。器件功能层中的微/纳米针孔通常会导致水蒸气渗透,从而导致钙钛矿的后续分解,最终导致器件性能下降和工作寿命缩短。在这项工作中,低温原子层沉积(ALD)技术被用于将无针孔的金属氧化物层(TiO 和 AlO)纳入由氧化铟锡/氧化镍/钙钛矿/聚(3-己基噻吩-2,5-二基)/TiO/Ag 组成的倒置钙钛矿太阳能电池中。通过 X 射线光电子能谱研究了插入的 TiO 层和钙钛矿层之间的界面特性。结果表明,TiO ALD 制造工艺对钙钛矿层几乎没有降解作用。TiO 层可以显著降低界面电荷复合损耗,改善界面接触,并提高耐水性。具有 TiO 界面层的器件实现了 18.3%的最高功率转换效率(PCE)。设计并沉积了堆叠的 AlO 封装层在器件顶部,以进一步提高在恶劣环境条件下器件的稳定性。具有最佳性能的封装器件在环境条件下储存一千小时后,初始 PCE 保留了 97%。它们还表现出出色的耐水性,并且在浸入去离子水长达 2 小时后,器件的 PCE 和光电流没有明显下降。我们的方法为在实际工作条件下开发高效稳定的钙钛矿太阳能电池提供了一种有前途的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验