Chandra Maji Ram, Mishra Saikat, Bhandari Anirban, Singh Ravindra, Olmstead Marilyn M, Patra Apurba K
Department of Chemistry, National Institute of Technology Durgapur , Mahatma Gandhi Avenue, Durgapur 713 209, India.
Department of Chemistry, Indian Institute of Technology (IIT) Kanpur , Kanpur 208 016, India.
Inorg Chem. 2018 Feb 5;57(3):1550-1561. doi: 10.1021/acs.inorgchem.7b02897. Epub 2018 Jan 22.
The proton-coupled reduction of Cu-bound nitrite (NO) to nitric oxide (NO + 2H + e → NO(g) + HO), such as occurs in the enzyme copper nitrite reductase, is investigated in this work. Our studies focus on the copper(II/I) model complexes [(L2)Cu(HO)Cl] (1), [(L2)Cu(ONO)] (2), [(L2)Cu(CHCO)] (3), and [Co(Cp)][(L2)Cu(NO)(CHCN] (4), where HL2 = N-[2-(methylthio)ethyl]-2'-pyridinecarboxamide. Complex 1 readily reacts with a NO anion to form the nitrito-O-bound copper(II) complex 2. Electrochemical reduction of Cu → Cu indicates coordination isomerization from asymmetric nitrito-κ-O,O to nitro-κ-N. Isolation and spectroscopic characterization of 4 support this notion of nitrite coordination isomerization (ν ∼ 460 cm). A reduction of 2, followed by reaction with acetic acid, causes evolution of stoichiometric NO via the transient copper(II) nitrosyl species and subsequent formation of the acetate-bound complex 3. The probable copper nitrosyl intermediate [(L2)Cu(NO)(CHCN)] of the {CuNO} type is evident from low-temperature UV-vis absorption (λ = 722 nm) and electron paramagnetic resonance spectroscopy. A density functional theory (DFT)-optimized model of [(L2)Cu(NO)(CHCN)] shows end-on NO binding to Cu with Cu-N(NO) and N-O distances of 1.989 and 1.140 Å, respectively, and a Cu-N-O angle of 119.25°, consistent with the formulation of Cu-NO. A spin-state change that triggers NO release is observed. Considering singlet- and triplet-state electronic configurations of this model, DFT-calculated ν values of 1802 and 1904 cm, respectively, are obtained. We present here important mechanistic aspects of the copper-mediated nitrite reduction pathway with the use of model complexes employing the ligand HL2 and an analogous phenyl-based ligand, N-[2-(methylthio)phenyl]-2'-pyridinecarboxamide (HL1).
本文研究了质子耦合的铜结合亚硝酸盐(NO)还原为一氧化氮(NO + 2H + e → NO(g) + HO)的过程,这种还原反应如在亚硝酸铜还原酶中发生的那样。我们的研究聚焦于铜(II/I)模型配合物[(L2)Cu(HO)Cl](1)、[(L2)Cu(ONO)](2)、[(L2)Cu(CHCO)](3)和[Co(Cp)][(L2)Cu(NO)(CHCN](4),其中HL2 = N-[2-(甲硫基)乙基]-2'-吡啶甲酰胺。配合物1很容易与NO阴离子反应形成亚硝酸根-O配位的铜(II)配合物2。Cu → Cu的电化学还原表明配位异构化从不对称的亚硝酸根-κ-O,O变为硝基-κ-N。4的分离和光谱表征支持了这种亚硝酸盐配位异构化的观点(ν ∼ 460 cm)。2的还原,随后与乙酸反应,通过瞬态铜(II)亚硝酰基物种导致化学计量的NO释放,并随后形成乙酸根配位的配合物3。从低温紫外可见吸收(λ = 722 nm)和电子顺磁共振光谱可以明显看出可能的{CuNO}型铜亚硝酰基中间体[(L2)Cu(NO)(CHCN)]。[(L2)Cu(NO)(CHCN)]的密度泛函理论(DFT)优化模型显示NO以端基方式与Cu结合,Cu-N(NO)和N-O距离分别为1.989和1.140 Å,Cu-N-O角为119.25°,与Cu-NO的结构一致。观察到了触发NO释放的自旋态变化。考虑该模型的单重态和三重态电子构型,分别得到DFT计算的ν值为1802和1904 cm。我们在此展示了使用配体HL2和类似的苯基配体N-[2-(甲硫基)苯基]-2'-吡啶甲酰胺(HL1)的模型配合物对铜介导的亚硝酸盐还原途径的重要机理方面。