Hematian Shabnam, Garcia-Bosch Isaac, Karlin Kenneth D
Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21211, United States.
Acc Chem Res. 2015 Aug 18;48(8):2462-74. doi: 10.1021/acs.accounts.5b00265. Epub 2015 Aug 5.
Our long-time niche in synthetic biological inorganic chemistry has been to design ligands and generate coordination complexes of copper or iron ions or both, those reacting with dioxygen (O2) or nitrogen oxides (e.g., nitric oxide (NO(g)) and nitrite (NO2(-))) or both. As inspiration for this work, we turn to mitochondrial cytochrome c oxidase, which is responsible for dioxygen consumption and is also the predominant target for NO(g) and nitrite within mitochondria. In this Account, we highlight recent advances in studying synthetic heme/Cu complexes in two respects. First, there is the design, synthesis, and characterization of new O2 adducts whose further study will add insights into O2 reductive cleavage chemistry. Second, we describe how related heme/Cu constructs reduce nitrite ion to NO(g) or the reverse, oxidize NO(g) to nitrite. The reactions of nitrogen oxides occur as part of CcO's function, which is intimately tied to cellular O2 balance. We had first discovered that reduced heme/Cu compounds react with O2 giving μ-oxo heme-Fe(III)-O-Cu(II)(L) products; their properties are discussed. The O-atom is derived from dioxygen, and interrogations of these systems led to the construction and characterization of three distinctive classes of heme-peroxo complexes, two high-spin and one low-spin species. Recent investigations include a new approach to the synthesis of low-spin heme-peroxo-Cu complexes, employing a "naked" synthon, where the copper ligand denticity and geometric types can be varied. The result is a collection of such complexes; spectroscopic and structural features (by DFT calculations) are described. Some of these compounds are reactive toward reductants/protons effecting subsequent O-O cleavage. This points to how subtle improvements in ligand environment lead to a desired local structure and resulting optimized reactivity, as known to occur at enzyme active sites. The other sector of research is focused on heme/Cu assemblies mediating the redox interplay between nitrite and NO(g). In the nitrite reductase chemistry, the cupric center serves as a Lewis acid, while the heme is the redox active center providing the electron. The orientation of nitrite in approaching the ferrous heme center and N-atom binding are important. Also, detailed spectroscopic and kinetic studies of the NO(g) oxidase chemistry, in excellent agreement with theoretical calculations, reveal the intermediates and key mechanistic steps. Thus, we suggest that both chemical and biochemical heme/Cu-mediated nitrite reductase and NO(g) oxidase chemistry require N-atom binding to a ferrous heme along with cupric ion O-atom coordination, proceeding via a three-membered O-Fe-N chelate ring transition state. These important mechanistic features of heme/Cu systems interconverting NO(g) and nitrite are discussed for the first time.
我们在合成生物无机化学领域长期专注的方向是设计配体,并生成铜离子或铁离子或两者兼具的配位络合物,这些络合物可与二氧(O₂)或氮氧化物(如一氧化氮(NO(g))和亚硝酸盐(NO₂⁻))或两者发生反应。作为这项工作的灵感来源,我们将目光投向线粒体细胞色素c氧化酶,它负责消耗二氧,也是线粒体中NO(g)和亚硝酸盐的主要作用靶点。在本综述中,我们从两个方面重点介绍了合成血红素/Cu络合物研究的最新进展。第一,新型O₂加合物的设计、合成与表征,对其进一步研究将有助于深入了解O₂还原裂解化学。第二,我们描述了相关的血红素/Cu结构如何将亚硝酸根离子还原为NO(g),或者反之,将NO(g)氧化为亚硝酸盐。氮氧化物的反应是细胞色素c氧化酶功能的一部分,这与细胞内的O₂平衡密切相关。我们首先发现还原态的血红素/Cu化合物与O₂反应生成μ-氧代血红素-Fe(III)-O-Cu(II)(L)产物,并对其性质进行了讨论。氧原子源自二氧,对这些体系的研究促使我们构建并表征了三类独特的血红素-过氧络合物,其中两类为高自旋物种,一类为低自旋物种。近期的研究包括一种合成低自旋血红素-过氧-Cu络合物的新方法,采用了一种“裸”合成子,其中铜配体的齿数和几何类型可以改变。结果得到了一系列这样的络合物,并描述了其光谱和结构特征(通过密度泛函理论计算)。其中一些化合物对还原剂/质子具有反应性,从而导致随后的O-O键断裂。这表明配体环境的细微改善如何导致所需的局部结构并产生优化的反应活性,这在酶活性位点也有发生。研究的另一个方向集中在介导亚硝酸盐和NO(g)之间氧化还原相互作用的血红素/Cu组装体上。在亚硝酸还原酶化学中,铜中心作为路易斯酸,而血红素是提供电子的氧化还原活性中心。亚硝酸盐接近亚铁血红素中心的取向和氮原子的结合很重要。此外,对NO(g)氧化酶化学的详细光谱和动力学研究与理论计算高度吻合,揭示了中间体和关键的机理步骤。因此,我们认为化学和生化的血红素/Cu介导的亚硝酸还原酶和NO(g)氧化酶化学都需要氮原子与亚铁血红素结合以及铜离子与氧原子配位,通过一个三元O-Fe-N螯合环过渡态进行。首次讨论了血红素/Cu体系在NO(g)和亚硝酸盐相互转化过程中的这些重要机理特征。