Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel, Switzerland.
Angew Chem Int Ed Engl. 2018 Mar 19;57(13):3509-3513. doi: 10.1002/anie.201711445. Epub 2018 Feb 26.
The conversion of nitric oxide (NO) into nitrate (NO ) by dioxygenation protects cells from lethal NO. Starting from NO-bound heme, the first step in converting NO into benign NO is the ligand exchange reaction FeNO+O →FeO +NO, which is still poorly understood at a molecular level. For wild-type (WT) truncated hemoglobin N (trHbN) and its Y33A mutant, the calculated barriers for the exchange reaction differ by 1.5 kcal mol , compared with 1.7 kcal mol from experiment. It is directly confirmed that the ligand exchange reaction is rate-limiting in trHbN and that entropic contributions account for 75 % of the difference between the WT and the mutant. Residues Tyr 33, Phe 46, Val 80, His 81, and Gln 82 surrounding the active site are expected to control the reaction path. By comparison with electronic structure calculations, the transition state separating the two ligand-bound states was assigned to a A state.
一氧化氮(NO)被氧气转化为硝酸盐(NO ),从而保护细胞免受致命的 NO 侵害。从结合态的血红素开始,将 NO 转化为良性 NO 的第一步是配体交换反应 FeNO+O →FeO +NO,该反应在分子水平上仍未被很好地理解。对于野生型(WT)截断血红蛋白 N(trHbN)及其 Y33A 突变体,计算得出的交换反应的能垒相差 1.5 kcal/mol,而实验结果相差 1.7 kcal/mol。实验直接证实,配体交换反应是 trHbN 中的限速步骤,熵贡献占 WT 和突变体之间差异的 75%。位于活性位点周围的 Tyr 33、Phe 46、Val 80、His 81 和 Gln 82 残基预计会控制反应路径。通过与电子结构计算进行比较,将两个配体结合态之间的过渡态分配到 A 态。