Research and Development Division, Miami Valley Biotech, Dayton, Ohio, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
Research and Development Division, Miami Valley Biotech, Dayton, Ohio, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Chemistry and Biochemistry Department, University of Dayton, Dayton, Ohio, USA.
J Biol Chem. 2021 Jan-Jun;296:100186. doi: 10.1074/jbc.RA120.016637. Epub 2020 Dec 17.
The substrates O and NO cooperatively activate the NO dioxygenase function of Escherichia coli flavohemoglobin. Steady-state and transient kinetic measurements support a structure-based mechanistic model in which O and NO movements and conserved amino acids at the E11, G8, E2, E7, B10, and F7 positions within the globin domain control activation. In the cooperative and allosteric mechanism, O migrates to the catalytic heme site via a long hydrophobic tunnel and displaces LeuE11 away from the ferric iron, which forces open a short tunnel to the catalytic site gated by the ValG8/IleE15 pair and LeuE11. NO permeates this tunnel and leverages upon the gating side chains triggering the CD loop to furl, which moves the E and F-helices and switches an electron transfer gate formed by LysF7, GlnE7, and water. This allows FADH to reduce the ferric iron, which forms the stable ferric-superoxide-TyrB10/GlnE7 complex. This complex reacts with internalized NO with a bimolecular rate constant of 10 M s forming nitrate, which migrates to the CD loop and unfurls the spring-like structure. To restart the cycle, LeuE11 toggles back to the ferric iron. Actuating electron transfer with O and NO movements averts irreversible NO poisoning and reductive inactivation of the enzyme. Together, structure snapshots and kinetic constants provide glimpses of intermediate conformational states, time scales for motion, and associated energies.
O 和 NO 共同激活大肠杆菌黄素血红蛋白的 NO 双氧酶功能。稳态和瞬态动力学测量支持基于结构的机制模型,其中球蛋白结构域内的 E11、G8、E2、E7、B10 和 F7 位置的 O 和 NO 运动以及保守氨基酸控制激活。在协同和变构机制中,O 通过长疏水隧道迁移到催化血红素位点,并将 LeuE11 从三价铁上推离,这迫使短隧道通向由 ValG8/IleE15 对和 LeuE11 门控的催化位点。NO 渗透此隧道并利用门控侧链触发 CD 环卷曲,从而移动 E 和 F 螺旋并切换由 LysF7、GlnE7 和水形成的电子转移门。这允许 FADH 还原三价铁,形成稳定的铁过氧化物-TyrB10/GlnE7 络合物。该络合物与内化的 NO 以双分子速率常数 10 M s 反应形成硝酸盐,硝酸盐迁移到 CD 环并展开弹簧样结构。为了重新启动循环,LeuE11 切换回三价铁。O 和 NO 运动的电子转移激活可避免不可逆的 NO 中毒和酶的还原失活。结构快照和动力学常数共同提供了中间构象状态、运动的时间尺度和相关能量的 glimpses。