Shin Dongjoon, Shin Jungho, Yeo Taehan, Hwang Hayoung, Park Seonghyun, Choi Wonjoon
School of Mechanical Engineering, Korea University, Seoul, 136-701, South Korea.
Small. 2018 Mar;14(11):e1703755. doi: 10.1002/smll.201703755. Epub 2018 Jan 22.
Core-shell nanostructures of metal oxides and carbon-based materials have emerged as outstanding electrode materials for supercapacitors and batteries. However, their synthesis requires complex procedures that incur high costs and long processing times. Herein, a new route is proposed for synthesizing triple-core-shell nanoparticles of TiO @MnO @C using structure-guided combustion waves (SGCWs), which originate from incomplete combustion inside chemical-fuel-wrapped nanostructures, and their application in supercapacitor electrodes. SGCWs transform TiO to TiO @C and TiO @MnO to TiO @MnO @C via the incompletely combusted carbonaceous fuels under an open-air atmosphere, in seconds. The synthesized carbon layers act as templates for MnO shells in TiO @C and organic shells of TiO @MnO @C. The TiO @MnO @C-based electrodes exhibit a greater specific capacitance (488 F g at 5 mV s ) and capacitance retention (97.4% after 10 000 cycles at 1.0 V s ), while the absence of MnO and carbon shells reveals a severe degradation in the specific capacitance and capacitance retention. Because the core-TiO nanoparticles and carbon shell prevent the deformation of the inner and outer sides of the MnO shell, the nanostructures of the TiO @MnO @C are preserved despite the long-term cycling, giving the superior performance. This SGCW-driven fabrication enables the scalable synthesis of multiple-core-shell structures applicable to diverse electrochemical applications.
金属氧化物与碳基材料的核壳纳米结构已成为超级电容器和电池领域出色的电极材料。然而,其合成需要复杂的程序,成本高昂且加工时间长。在此,我们提出了一种利用结构导向燃烧波(SGCWs)合成TiO@MnO@C三核壳纳米颗粒的新路线,该燃烧波源于化学燃料包裹的纳米结构内部的不完全燃烧,并介绍了其在超级电容器电极中的应用。在露天环境下,SGCWs可在数秒内通过不完全燃烧的碳质燃料将TiO转化为TiO@C,将TiO@MnO转化为TiO@MnO@C。合成的碳层充当TiO@C中MnO壳层以及TiO@MnO@C有机壳层的模板。基于TiO@MnO@C的电极表现出更大的比电容(在5 mV s时为488 F g)和电容保持率(在1.0 V s下循环10000次后为97.4%),而没有MnO和碳壳层时,比电容和电容保持率会严重下降。由于核心TiO纳米颗粒和碳壳可防止MnO壳层内外侧变形,因此尽管经过长期循环,TiO@MnO@C的纳米结构仍得以保留,从而具备优异性能。这种由SGCW驱动的制造方法能够可扩展地合成适用于多种电化学应用的多核壳结构。