Suppr超能文献

视觉中的瞬时受体电位通道

TRP Channels in Vision

作者信息

Katz Ben, Payne Richard, Minke Baruch

Abstract

The transient receptor potential (TRP) field began (for reviews see Minke, 2010; Montell, 2011; Hardie, 2011) with the analysis of a spontaneously formed mutant showing transient, rather than sustained, responses to prolonged intense illumination in electroretinogram (ERG) measurements, rendering the flies effectively blind (Cosens and Manning, 1969). Cosens and Manning (1969) isolated this mutant, designated this strain the “A-type” mutant, and attributed its phenotype to a failure of photopigment regeneration (Cosens, 1971). The isolation of this mutant, though potentially interesting, raised a number of concerns at the time. One main concern was that the results were based on a single spontaneously occurring mutant with no description of its genetic background. It was thus difficult to know what genetic alterations this strain represented. For example, the results could have been due to additive effects of alterations in several genes mapping to the same chromosome (Pak, 2010). The isolation of multiple mutated alleles from a baseline stock of known genetic background, conducted by Pak and colleagues (Pak, 2010), was important in establishing that the observed phenotype was indeed due to mutation in a single gene. Another concern at the time was that the cellular origins of ERG components were not well established. One could not be certain whether the lack of a sustained response seen in the ERG of this strain originated from the photoreceptors or from other retinal cells (Pak, 2010). This question was settled by performing intracellular recordings from the mutant photoreceptors (Minke et al., 1975). Only after determining that the defect arose from the photoreceptors, was it safe to conclude that this mutant is defective in phototransduction (Pak, 2010; Minke et al., 1975). Extensive studies of this mutant (Minke et al., 1975; Minke, 1977, 1982; Minke and Selinger, 1992a; Barash and Minke, 1994; Barash et al., 1988) provided a more descriptive name, “transient receptor potential” or (Minke et al., 1975) (Figure 3.1a) by Minke and colleagues, which was ultimately adopted by the scientific community to designate the entire gene family (Montell et al., 2002). These studies revealed that the mutant photopigment cycle was not altered and concluded that the defect was at an intermediate stage of the phototransduction cascade. A combination of electrophysiological, biochemical (Devary et al., 1987), and direct Ca measurements in other invertebrates (Minke and Tsacopoulos, 1986) supported an hypothesis that the TRP encodes for a novel phosphoinositide-activated and Ca-permeable channel/transporter protein, which is defective in the mutant (Devary et al., 1987; Minke and Selinger, 1991; Selinger and Minke, 1988). When the gene was cloned, its sequence indicated a transmembrane (TM) protein with eight TM helices, a topology reminiscent of known receptor/transporter/channel proteins (Montell and Rubin, 1989; Wong et al., 1989). Immunofluorescent measurements of TRP localized the protein to the signaling compartment, the , further supporting its participation in phototransduction. However, due to the lack of homologous proteins to the TRP protein in available databases and results showing that in a presumably null alleles (Montell and Rubin, 1989; Wong et al., 1989), a sustained receptor potential persists under dim light stimulation (Minke et al., 1975; Minke, 1977), it was concluded that the gene does not encode for the light-sensitive channel (Montell and Rubin, 1989; Wong et al., 1989). Following later studies, based on the ability of La to mimic the phenotype (Suss Toby et al., 1991; Hochstrate, 1989) (Figure 3.1b), it was proposed that the TRP might encode for an inositide-activated Ca channel/transporter required for Ca stores refilling (Minke and Selinger, 1992b). Consequently, using whole-cell voltage-clamp recordings to determine ionic selectivity, it was shown that the primary defect in the mutant was a drastic reduction in the Ca permeability of the light-sensitive channels themselves (Hardie and Minke, 1992). This conclusion was further supported by studies using microfluorimetry (Peretz et al., 1994a) and Ca-selective microelectrodes (Peretz et al., 1994b) (Figure 3.2a and b). The identification of another protein similar to the gene product, designated TRP-like (TRPL), using a Ca/calmodulin binding assay, allowed for a reinterpretation of the phenotype of the mutation and suggested that the light response of is mediated by channels composed from the TRP and TRPL gene products (Hardie and Minke, 1992; Phillips et al., 1992). Later, a third TRP homologue channel of with similarity to TRP and TRPL was discovered by Montell and colleagues and was designated TRPγ (Xu et al., 2000). Using a TRPγ-antibody the authors showed that the protein is highly expressed in the retina and interacts with both the TRP and TRPL channels. Although the lack of a light response in the double null mutant (Scott et al., 1997) indicates that TRPγ cannot by itself form a light-sensitive channel, the authors suggested that TRPγ-TRPL heteromers may form an additional light-sensitive channel complex. In other insects, the role of TRPγ is even less certain. TRPγ expression was not detectable in the compound eyes of the moth, (Chouquet et al., 2009), nor in those of the cockroach, (French et al., 2015). Hence, there is no evidence so far of a functional role for in phototransduction in any species, although roles in olfaction, cardiac function, and mechanosensation have been reported in insects (Chouquet et al., 2009; Wicher et al., 2006; Akitake et al., 2015). In conclusion, the normal light-sensitive current comprises two distinct conductances: one is highly Ca selective and is encoded by the gene, and the second is a channel responsible for the residual light-sensitive current in the mutants. We now know that the latter conductance is encoded by the homologous gene while the involvement of , if any, is unclear (Phillips et al., 1992; Niemeyer et al., 1996; Reuss et al., 1997).

摘要

瞬时受体电位(TRP)领域始于(相关综述见Minke,2010;Montell,2011;Hardie,2011)对一个自发形成的突变体的分析,该突变体在视网膜电图(ERG)测量中对长时间强光照射表现出瞬时而非持续的反应,导致果蝇实际上失明(Cosens和Manning,1969)。Cosens和Manning(1969)分离出这个突变体,将该品系命名为“A型”突变体,并将其表型归因于光色素再生失败(Cosens,1971)。这个突变体的分离尽管可能很有趣,但在当时引发了一些担忧。一个主要担忧是结果基于一个自发出现的单一突变体,且没有对其遗传背景进行描述。因此很难知道这个品系代表了哪些基因改变。例如,结果可能是由于映射到同一条染色体上的几个基因改变的累加效应(Pak,2010)。Pak及其同事从已知遗传背景的基线品系中分离出多个突变等位基因(Pak,2010),这对于确定观察到的表型确实是由于单个基因突变很重要。当时的另一个担忧是ERG成分的细胞起源尚未明确确立。无法确定在这个品系的ERG中看到的持续反应缺失是源于光感受器还是其他视网膜细胞(Pak,2010)。通过对突变体光感受器进行细胞内记录解决了这个问题(Minke等人,1975)。只有在确定缺陷源于光感受器之后,才可以安全地得出这个突变体在光转导方面存在缺陷的结论(Pak,2010;Minke等人,1975)。对这个突变体的广泛研究(Minke等人,1975;Minke,1977,1982;Minke和Selinger,1992a;Barash和Minke,1994;Barash等人,1988)提供了一个更具描述性的名称,“瞬时受体电位”或 (Minke等人,1975)(图3.1a),由Minke及其同事提出,最终被科学界采用来命名整个基因家族(Montell等人,2002)。这些研究表明突变体的光色素循环没有改变,并得出缺陷处于光转导级联反应中间阶段的结论。电生理学、生物化学(Devary等人,1987)以及对其他无脊椎动物的直接钙测量(Minke和Tsacopoulos,1986)相结合,支持了一个假设,即TRP编码一种新型的磷酸肌醇激活且钙可渗透的通道/转运蛋白,该蛋白在 突变体中存在缺陷(Devary等人,1987;Minke和Selinger,1991;Selinger和Minke,1988)。当克隆 基因时,其序列表明是一种具有八个跨膜(TM)螺旋的跨膜蛋白,其拓扑结构让人联想到已知的受体/转运蛋白/通道蛋白(Montell和Rubin,1989;Wong等人,1989)。对TRP的免疫荧光测量将该蛋白定位到信号区室,即 ,进一步支持了其参与光转导。然而,由于在可用数据库中缺乏与TRP蛋白同源的蛋白质,并且结果表明在一个推测的无效 等位基因中(Montell和Rubin,1989;Wong等人,1989),在暗光刺激下持续的受体电位仍然存在(Minke等人,1975;Minke,1977),因此得出结论, 基因不编码光敏感通道(Montell和Rubin,1989;Wong等人,1989)。在后来的研究中,基于镧能够模拟 表型的能力(Suss Toby等人,1991;Hochstrate,1989)(图3.1b),有人提出TRP可能编码一种钙库再填充所需的肌醇激活钙通道/转运蛋白(Minke和Selinger,1992b)。因此,使用全细胞电压钳记录来确定离子选择性,结果表明 突变体的主要缺陷是光敏感通道本身钙通透性的急剧降低(Hardie和Minke,1992)。使用微量荧光测定法(Peretz等人,1994a)和钙选择性微电极(Peretz等人,l994b)进行的研究进一步支持了这一结论(图3.2a和b)。使用钙/钙调蛋白结合测定法鉴定出另一种与 基因产物相似的蛋白质,称为TRP样(TRPL),这使得对 突变体表型的重新解释成为可能,并表明 的光反应是由TRP和TRPL基因产物组成的通道介导的(Hardie和Minke,1992;Phillips等人,1992)。后来,Montell及其同事发现了与TRP和TRPL相似的 的第三个TRP同源通道,并将其命名为TRPγ(Xu等人,2000)。作者使用TRPγ抗体表明该蛋白在视网膜中高度表达,并与TRP和TRPL通道相互作用。尽管在 双缺失突变体中缺乏光反应(Scott等人,1997)表明TRPγ本身不能形成光敏感通道,但作者认为TRPγ - TRPL异源二聚体可能形成另一种光敏感通道复合物。在其他昆虫中,TRPγ的作用甚至更不确定。在蛾 的复眼中未检测到TRPγ表达(Chouquet等人,2009),在蟑螂 的复眼中也未检测到(French等人,2015)。因此,尽管在昆虫中已报道其在嗅觉、心脏功能和机械感觉中的作用(Chouquet等人,2009;Wicher等人,2006;Akitake等人,2015),但到目前为止尚无证据表明 在任何物种的光转导中具有功能作用。总之,正常的光敏感电流包括两种不同的电导:一种是高度钙选择性的,由 基因编码,另一种是负责 突变体中残余光敏感电流的通道。我们现在知道后一种电导由同源基因 编码,而 的参与情况(如果有)尚不清楚(Phillips等人,1992;Niemeyer等人,1996;Reuss等人,1997)。

相似文献

2
A brief history of trp: commentary and personal perspective.TRP 的简史:评论和个人观点。
Pflugers Arch. 2011 May;461(5):493-8. doi: 10.1007/s00424-011-0922-9. Epub 2011 Feb 1.
5
Photosensitive TRPs.光敏性瞬时受体电位通道
Handb Exp Pharmacol. 2014;223:795-826. doi: 10.1007/978-3-319-05161-1_4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验