Suppr超能文献

瞬时受体电位通道:它们是什么样子的?

TRP Channels: What Do They Look Like?

作者信息

Rosasco Mario G., Gordon Sharona E.

Abstract

The first transient receptor potential (TRP) ion channel was identified as a locus that gave rise to a phenotype in which the photoreceptor light response decayed to baseline during prolonged illumination (Cosens and Manning, 1969; Minke et al., 1975). The identification of the TRP fly in 1969 and the molecular identification of the gene in 1975 set the stage for the subsequent explosion of discoveries that continue even today. The mid-1990s through the early 2000s were a particularly productive time for identification of many new TRP subfamilies and subfamily members. This is apparent from the rapid increase in the number of publications on TRP channels listed in PubMed (Figure 1.1); once many new TRP channels were identified, work on understanding their physiology progressed rapidly. Six subfamilies of TRP channels have now been identified in mammals, with an additional subfamily found in invertebrates and nonmammalian vertebrate animals (Figure 1.1, right panel). Because of diverse nomenclature for any given TRP channel, only the characters used to describe each column in Figure 1.1 were used as search terms. Although this approach clearly underestimates the work on all TRP channels, it likely underestimates those TRP channels with primarily clinical publications more than others. TRP channels are members of the voltage-gated superfamily of ion channels that includes the voltage gated K, Na, and Ca channels as well as related cyclic nucleotide-gated channels. They form as tetramers of identical subunits (Figure 1.2), although heterotetramers of TRP channel subunits have been reported (reviewed in Cheng et al., 2010). Like other members of the voltage-gated superfamily, each subunit includes six membrane-spanning helices with a reentrant pore loop between the fifth and six transmembrane helices, and intracellular amino- and carboxy-terminali. The first four transmembrane segments (Figure 1.2, blue) form the voltage-sensing or voltage-sensing-like domain. The remaining two transmembrane segments, along with the reentrant pore loop (Figure 1.2, yellow), form the ion-conducting pore of the channel. Although some TRP channels (e.g., TRPM8) show voltage-dependent activation (Voets et al., 2007); others show little or no voltage-dependent gating (e.g., TRPV1) (Liu et al., 2009). This variability in function is likely due to variability in the amino acid sequence in the fourth transmembrane helix, which for voltage-gated channels includes a number of positively charged residues and for voltage-independent channels does not (Figure 1.3). It is worth noting that the macroscopic current-voltage relationship of TRPV1 shows significant outward rectification. However, this is due almost exclusively to rectification in the unitary conductance (Liu et al., 2009). A hallmark of many TRP channels is the TRP domain following the sixth transmembrane helix (Figures 1.2 (purple) and 1.4). This can be recognized based on primary sequence in TRPC, TRPM, and TRPV channels. Although it was not obvious from the primary sequence of TRPA1 channels that they included a TRP domain, structural homology in this region was revealed by the recent cryoEM structures of TRPV1 (Liao et al., 2013) and TRPA1 (Paulsen et al., 2015) and is shown in Figure 1.2. The TRP domain consists of an alpha helical segment parallel and in close proximity to the plasma membrane. Although a definitive function for the TRP domain has not been established, it is positioned well to interact with both the membrane and the amino-terminal region. Three TRP subfamilies, TRPC, TRPV, and TRPA, have amino-terminal ankyrin repeat domains of varying lengths (Figures 1.2 and 1.5). TRPA1's domain is the longest, although we do not yet know how many ankyrin repeats may be present in TRPA1 channels—only that it is a large number. The function of these domains is not fully understood, but in some channels this structural element appears to influence gating. For example, in TRPV1 the ankyrin repeats contain a reactive cysteine that promotes channel opening (Salazar et al., 2008), and the region has been proposed to be a functionally important binding site for ATP (Lishko et al., 2007) and calmodulin (Rosenbaum et al., 2004). The TRP channel superfamily can be subdivided into seven separate subfamilies: TRPA, TRPC, TRPM, TRPML, TRPN, TRPP, and TRPV. The individual subunits of all seven subfamilies’ members are thought to contain six transmembrane segments that assemble as tetramers to form functional TRP channels (Figure 1.2). However, the tissue distribution, function, and even in which species each subfamily can be found vary wildly (Figure 1.6), representing the myriad roles that TRP channels play in neurobiology.

摘要

首个瞬时受体电位(TRP)离子通道被确定为一个基因座,该基因座导致了一种表型,即在长时间光照期间光感受器的光反应衰减至基线水平(科森斯和曼宁,1969年;明克等人,1975年)。1969年TRP果蝇的鉴定以及1975年该基因的分子鉴定为随后持续至今的一系列发现奠定了基础。20世纪90年代中期到21世纪初是鉴定许多新的TRP亚家族和亚家族成员的特别富有成果的时期。这从PubMed上列出的关于TRP通道的出版物数量的快速增加中可以明显看出(图1.1);一旦鉴定出许多新的TRP通道,对其生理学的理解工作就迅速推进。目前已在哺乳动物中鉴定出六个TRP通道亚家族,在无脊椎动物和非哺乳动物脊椎动物中还发现了另外一个亚家族(图1.1,右图)。由于任何给定TRP通道的命名方式多样,图1.1中用于描述每一列的字符仅用作搜索词。尽管这种方法显然低估了所有TRP通道的研究工作,但它可能比其他通道更低估了那些主要有临床出版物的TRP通道。TRP通道是电压门控离子通道超家族的成员,该超家族包括电压门控的钾、钠和钙通道以及相关的环核苷酸门控通道。它们由相同亚基的四聚体组成(图1.2),尽管也有报道称存在TRP通道亚基的异源四聚体(程等人综述,2010年)。与电压门控超家族的其他成员一样,每个亚基包括六个跨膜螺旋,在第五和第六个跨膜螺旋之间有一个折返的孔环,以及细胞内的氨基末端和羧基末端。前四个跨膜片段(图1.2,蓝色)形成电压感应或类似电压感应的结构域。其余两个跨膜片段,连同折返的孔环(图1.2,黄色),形成通道的离子传导孔。尽管一些TRP通道(如TRPM8)表现出电压依赖性激活(沃茨等人,2007年);但其他通道表现出很少或没有电压依赖性门控(如TRPV1)(刘等人,2009年)。这种功能上的差异可能是由于第四个跨膜螺旋中氨基酸序列的差异,对于电压门控通道,该螺旋包括许多带正电荷的残基,而对于电压非依赖性通道则没有(图1.3)。值得注意的是,TRPV1的宏观电流 - 电压关系显示出明显的外向整流。然而,这几乎完全是由于单通道电导的整流(刘等人,2009年)。许多TRP通道的一个标志是第六个跨膜螺旋之后的TRP结构域(图1.2(紫色)和1.4)。这可以根据TRPC、TRPM和TRPV通道的一级序列识别。尽管从TRPA1通道的一级序列中并不明显它们包含一个TRP结构域,但TRPV1(廖等人,2013年)和TRPA1(保尔森等人,2015年)最近的冷冻电镜结构揭示了该区域的结构同源性,并在图1.2中显示。TRP结构域由一个与质膜平行且紧密相邻的α螺旋段组成。尽管TRP结构域的确切功能尚未确定,但它的位置有利于与膜和氨基末端区域相互作用。三个TRP亚家族,TRPC、TRPV和TRPA,具有不同长度的氨基末端锚蛋白重复结构域(图1.2和1.5)。TRPA1的结构域最长,尽管我们还不知道TRPA1通道中可能存在多少个锚蛋白重复序列——只知道数量很多。这些结构域的功能尚未完全了解,但在一些通道中,这个结构元件似乎会影响门控。例如,在TRPV1中,锚蛋白重复序列包含一个促进通道开放的反应性半胱氨酸(萨拉萨尔等人,2008年),并且该区域被认为是ATP(利什科等人,2007年)和钙调蛋白(罗森鲍姆等人,2004年)的功能重要结合位点。TRP通道超家族可细分为七个独立的亚家族:TRPA、TRPC、TRPM、TRPML、TRPN、TRPP和TRPV。所有七个亚家族成员的单个亚基被认为包含六个跨膜片段,这些片段组装成四聚体以形成功能性TRP通道(图1.2)。然而,各亚家族在组织分布、功能,甚至在哪些物种中可以找到都有很大差异(图1.6),这代表了TRP通道在神经生物学中所起的众多作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验