Suppr超能文献

关于快速超极化后电位如何反常地增加规则放电神经元增益的计算模型。

A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons.

作者信息

Jaffe David B, Brenner Robert

机构信息

Department of Biology, UTSA Neurosciences Institute, University of Texas at San Antonio , San Antonio, Texas.

Department of Cell and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas.

出版信息

J Neurophysiol. 2018 Apr 1;119(4):1506-1520. doi: 10.1152/jn.00385.2017. Epub 2018 Jan 10.

Abstract

The gain of a neuron, the number and frequency of action potentials triggered in response to a given amount of depolarizing injection, is an important behavior underlying a neuron's function. Variations in action potential waveform can influence neuronal discharges by the differential activation of voltage- and ion-gated channels long after the end of a spike. One component of the action potential waveform, the afterhyperpolarization (AHP), is generally considered an inhibitory mechanism for limiting firing rates. In dentate gyrus granule cells (DGCs) expressing fast-gated BK channels, large fast AHPs (fAHP) are paradoxically associated with increased gain. In this article, we describe a mechanism for this behavior using a computational model. Hyperpolarization provided by the fAHP enhances activation of a dendritic inward current (a T-type Ca channel is suggested) that, in turn, boosts rebound depolarization at the soma. The model suggests that the fAHP may both reduce Ca channel inactivation and, counterintuitively, enhance its activation. The magnitude of the rebound depolarization, in turn, determines the activation of a subsequent, slower inward current (a persistent Na current is suggested) limiting the interspike interval. Simulations also show that the effect of AHP on gain is also effective for physiologically relevant stimulation; varying AHP amplitude affects interspike interval across a range of "noisy" stimulus frequency and amplitudes. The mechanism proposed suggests that small fAHPs in DGCs may contribute to their limited excitability. NEW & NOTEWORTHY The afterhyperpolarization (AHP) is canonically viewed as a major factor underlying the refractory period, serving to limit neuronal firing rate. We recently reported that enhancing the amplitude of the fast AHP (fAHP) in a relatively slowly firing neuron (vs. fast spiking neurons) expressing fast-gated BK channels augments neuronal excitability. In this computational study, we present a novel, quantitative hypothesis for how varying the amplitude of the fAHP can, paradoxically, influence a subsequent spike tens of milliseconds later.

摘要

神经元的增益,即响应给定数量的去极化注入所触发的动作电位的数量和频率,是神经元功能的一个重要行为基础。动作电位波形的变化可在峰电位结束很久之后通过电压门控通道和离子门控通道的差异激活来影响神经元放电。动作电位波形的一个组成部分,即超极化后电位(AHP),通常被认为是一种限制放电频率的抑制机制。在表达快速门控BK通道的齿状回颗粒细胞(DGC)中,大型快速AHP(fAHP)却反常地与增益增加相关。在本文中,我们使用计算模型描述了这种行为的一种机制。fAHP提供的超极化增强了树突内向电流(提示为T型钙通道)的激活,进而增强了胞体处的反弹去极化。该模型表明,fAHP可能既减少钙通道失活,又与直觉相反地增强其激活。反弹去极化的幅度进而决定了随后较慢的内向电流(提示为持续性钠电流)的激活,从而限制了峰电位间期。模拟还表明,AHP对增益的影响在生理相关刺激下也是有效的;改变AHP幅度会在一系列“噪声”刺激频率和幅度范围内影响峰电位间期。所提出的机制表明,DGC中的小fAHP可能导致其兴奋性受限。新发现与值得注意之处超极化后电位(AHP)通常被视为不应期的一个主要因素,用于限制神经元放电频率。我们最近报道,在表达快速门控BK通道的相对慢放电神经元(与快速放电神经元相比)中增强快速AHP(fAHP)的幅度会增强神经元兴奋性。在这项计算研究中,我们提出了一个新颖的定量假说,即改变fAHP的幅度如何反常地影响几十毫秒后的后续峰电位。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验