Suppr超能文献

BK钾通道促进大鼠CA1海马锥体神经元的高频放电并引起早期放电频率适应性变化。

BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells.

作者信息

Gu Ning, Vervaeke Koen, Storm Johan F

机构信息

Institute of Basal Medicine, Department of Physiology and Centre of Molecular Biology and Neuroscience, University of Oslo, PB 1103 Blindern, N-0317 Oslo, Norway.

出版信息

J Physiol. 2007 May 1;580(Pt.3):859-82. doi: 10.1113/jphysiol.2006.126367. Epub 2007 Feb 15.

Abstract

Neuronal potassium (K(+)) channels are usually regarded as largely inhibitory, i.e. reducing excitability. Here we show that BK-type calcium-activated K(+) channels enhance high-frequency firing and cause early spike frequency adaptation in neurons. By combining slice electrophysiology and computational modelling, we investigated functions of BK channels in regulation of high-frequency firing in rat CA1 pyramidal cells. Blockade of BK channels by iberiotoxin (IbTX) selectively reduced the initial discharge frequency in response to strong depolarizing current injections, thus reducing the early spike frequency adaptation. IbTX also blocked the fast afterhyperpolarization (fAHP), slowed spike rise and decay, and elevated the spike threshold. Simulations with a computational model of a CA1 pyramidal cell confirmed that the BK channel-mediated rapid spike repolarization and fAHP limits activation of slower K(+) channels (in particular the delayed rectifier potassium current (I(DR))) and Na(+) channel inactivation, whereas M-, sAHP- or SK-channels seem not to be important for the early facilitating effect. Since the BK current rapidly inactivates, its facilitating effect diminishes during the initial discharge, thus producing early spike frequency adaptation by an unconventional mechanism. This mechanism is highly frequency dependent. Thus, IbTX had virtually no effect at spike frequencies < 40 Hz. Furthermore, extracellular field recordings demonstrated (and model simulations supported) that BK channels contribute importantly to high-frequency burst firing in response to excitatory synaptic input to distal dendrites. These results strongly support the idea that BK channels play an important role for early high-frequency, rapidly adapting firing in hippocampal pyramidal neurons, thus promoting the type of bursting that is characteristic of these cells in vivo, during behaviour.

摘要

神经元钾(K⁺)通道通常被认为主要起抑制作用,即降低兴奋性。在此我们表明,BK型钙激活钾通道增强高频放电并导致神经元早期放电频率适应。通过结合脑片电生理学和计算建模,我们研究了BK通道在调节大鼠CA1锥体细胞高频放电中的功能。用iberiotoxin(IbTX)阻断BK通道可选择性降低对强去极化电流注入的初始放电频率,从而减少早期放电频率适应。IbTX还阻断了快速超极化后电位(fAHP),减缓了动作电位的上升和衰减,并提高了动作电位阈值。用CA1锥体细胞计算模型进行的模拟证实,BK通道介导的快速动作电位复极化和fAHP限制了较慢钾通道(特别是延迟整流钾电流(I_DR))的激活以及钠通道失活,而M型、慢超极化后电位型或小电导钙激活钾通道似乎对早期促进作用并不重要。由于BK电流迅速失活,其促进作用在初始放电期间减弱,从而通过一种非常规机制产生早期放电频率适应。这种机制高度依赖频率。因此,IbTX在放电频率<40Hz时几乎没有作用。此外,细胞外场记录表明(并得到模型模拟支持),BK通道对远端树突兴奋性突触输入所引发的高频爆发式放电起重要作用。这些结果有力地支持了这样一种观点,即BK通道在海马锥体细胞早期高频、快速适应放电中起重要作用,从而促进了这些细胞在行为过程中体内所特有的爆发式放电类型。

相似文献

1
BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells.
J Physiol. 2007 May 1;580(Pt.3):859-82. doi: 10.1113/jphysiol.2006.126367. Epub 2007 Feb 15.
2
9
Layer I neurons of rat neocortex. I. Action potential and repetitive firing properties.
J Neurophysiol. 1996 Aug;76(2):651-67. doi: 10.1152/jn.1996.76.2.651.

引用本文的文献

2
The NMDAR-BK channelosomes as regulators of synaptic plasticity.
Biochem Soc Trans. 2025 Jan 28;53(1):BST20240425. doi: 10.1042/BST20240425.
4
Multimodal Characterization of Cortical Neuron Response to Permanent Magnetic Field Induced Nanomagnetic Force Maps.
ACS Nano. 2024 Dec 24;18(51):34630-34645. doi: 10.1021/acsnano.4c09542. Epub 2024 Dec 9.
6
Large conductance voltage-and calcium-activated K (BK) channel in health and disease.
Front Pharmacol. 2024 Mar 22;15:1373507. doi: 10.3389/fphar.2024.1373507. eCollection 2024.
8
BK channels sustain neuronal Ca oscillations to support hippocampal long-term potentiation and memory formation.
Cell Mol Life Sci. 2023 Nov 21;80(12):369. doi: 10.1007/s00018-023-05016-y.
10
Striatal CDK5 Regulates Cholinergic Neuron Activation and Dyskinesia-like Behaviors through BK Channels.
Research (Wash D C). 2023 Apr 18;6:0121. doi: 10.34133/research.0121. eCollection 2023.

本文引用的文献

1
High-conductance potassium channels of the SLO family.
Nat Rev Neurosci. 2006 Dec;7(12):921-31. doi: 10.1038/nrn1992.
2
BKCa-Cav channel complexes mediate rapid and localized Ca2+-activated K+ signaling.
Science. 2006 Oct 27;314(5799):615-20. doi: 10.1126/science.1132915.
3
A mechanism for spike frequency adaptation.
J Physiol. 1976 Apr;256(2):315-32. doi: 10.1113/jphysiol.1976.sp011327.
4
Contrasting effects of the persistent Na+ current on neuronal excitability and spike timing.
Neuron. 2006 Jan 19;49(2):257-70. doi: 10.1016/j.neuron.2005.12.022.
5
BK channel beta4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures.
Nat Neurosci. 2005 Dec;8(12):1752-9. doi: 10.1038/nn1573. Epub 2005 Oct 30.
6
Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder.
Nat Genet. 2005 Jul;37(7):733-8. doi: 10.1038/ng1585. Epub 2005 Jun 5.
9
SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines.
Nat Neurosci. 2005 May;8(5):642-9. doi: 10.1038/nn1449. Epub 2005 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验