Physics of Nanodevices, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands.
Sci Rep. 2018 Jan 22;8(1):1378. doi: 10.1038/s41598-018-19741-z.
There is a large effort in research and development to realize electronic devices capable of storing information in new ways - for instance devices which simultaneously exhibit electro and magnetoresistance. However it remains a challenge to create devices in which both effects coexist. In this work we show that the well-known electroresistance in noble metal-Nb:SrTiO Schottky junctions can be augmented by a magnetoresistance effect in the same junction. This is realized by replacing the noble metal electrode with ferromagnetic Co. This magnetoresistance manifests as a room temperature tunneling anisotropic magnetoresistance (TAMR). The maximum room temperature TAMR (1.6%) is significantly larger and robuster with bias than observed earlier, not using Nb:SrTiO. In a different set of devices, a thin amorphous AlO interlayer inserted between Co and Nb:SrTiO, reduces the TAMR by more than 2 orders of magnitude. This points to the importance of intimate contact between the Co and Nb:SrTiO for the TAMR effect. This is explained by electric field enhanced spin-orbit coupling of the interfacial Co layer in contact with Nb:SrTiO. We propose that the large TAMR likely has its origin in the 3d orbital derived conduction band and large relative permittivity of Nb:SrTiO and discuss ways to further enhance the TAMR.
研究和开发工作致力于实现能够以新方式存储信息的电子设备 - 例如同时表现出电和磁阻的设备。然而,创建同时存在这两种效应的设备仍然是一个挑战。在这项工作中,我们表明,在具有相同结的贵金属-Nb:SrTiO 肖特基结中可以增强众所周知的电电阻,通过用铁磁 Co 取代贵金属电极来实现。这表现为室温隧道各向异性磁电阻(TAMR)。与不使用 Nb:SrTiO 相比,室温下 TAMR 的最大(1.6%)明显更大,并且在偏压下更稳健。在另一组器件中,在 Co 和 Nb:SrTiO 之间插入薄的非晶 AlO 层,将 TAMR 降低了两个数量级以上。这表明 Co 和 Nb:SrTiO 之间的紧密接触对于 TAMR 效应很重要。这可以通过与 Nb:SrTiO 接触的界面 Co 层的电场增强的自旋轨道耦合来解释。我们提出,大 TAMR 可能源于 Nb:SrTiO 的 3d 轨道衍生导带和大的相对介电常数,并讨论了进一步增强 TAMR 的方法。