Shin Yongyun, Lafata Jennifer Elston, Cao Yu
Department of Biostatistics, Virginia Commonwealth University, P.O. Box 980032, 830 East Main Street, Richmond, VA 23298-0032.
University of North Carolina at Chapel Hill.
J Stat Plan Inference. 2018 Mar;194:106-121. doi: 10.1016/j.jspi.2017.09.004. Epub 2017 Sep 28.
As the US health care system undergoes unprecedented changes, the need for adequately powered studies to understand the multiple levels of main and interaction factors that influence patient and other care outcomes in hierarchical settings has taken center stage. We consider two-level models where lower-level units are nested within each of higher-level clusters (e.g. patients within practices and practices within networks) and where two factors may have arbitrary and factor levels, respectively. Both factors may represent × treatment combinations, or one of them may be a pretreatment covariate. Consideration of both factors at the same higher or lower hierarchical level, or one factor per hierarchical level yields a cluster (C), multisite (M) or split-plot randomized design (S). We express statistical power to detect main, interaction, or any treatment effects as a function of sample sizes (), and factor levels, intraclass correlation and effect sizes given each design ∈ {}. The power function given and determines adequate sample sizes to achieve a minimum power requirement. Next, we compare the impact of the designs on power to facilitate selection of optimal design and sample sizes in a way that minimizes the total cost given budget and logistic constraints. Our approach enables accurate and conservative power computation with a priori knowledge of only three effect size differences regardless of how large × is, simplifying previously available computation methods for health services and other researches.
随着美国医疗保健系统经历前所未有的变革,开展有足够效力的研究以了解在分层环境中影响患者及其他护理结果的主要因素和交互因素的多个层面的必要性已成为核心问题。我们考虑两级模型,其中较低层级的单位嵌套于每个较高层级的集群中(例如,医疗机构中的患者以及医疗网络中的医疗机构),且两个因素可能分别具有任意数量的因素水平。这两个因素可能代表×治疗组合,或者其中一个可能是预处理协变量。在相同的较高或较低层级水平上考虑这两个因素,或者每个层级水平考虑一个因素,会产生聚类(C)、多地点(M)或裂区随机设计(S)。我们将检测主要、交互或任何治疗效果的统计效力表示为样本量()、因素水平、组内相关系数和效应大小的函数,其中每个设计∈{}。给定和的效力函数确定了足够的样本量,以实现最低效力要求。接下来,我们比较这些设计对效力的影响,以便在给定预算和后勤限制的情况下,以最小化总成本的方式促进最佳设计和样本量的选择。我们仅需事先了解三个效应大小差异,无论×有多大,我们的方法就能实现准确且保守的效力计算,从而简化了先前用于卫生服务及其他研究的计算方法。