Suppr超能文献

分层析因试验中不等群组大小的样本量计算。

Sample size calculation in hierarchical factorial trials with unequal cluster sizes.

机构信息

Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA.

Yale Center for Analytical Sciences, Yale University, New Haven, Connecticut, USA.

出版信息

Stat Med. 2022 Feb 20;41(4):645-664. doi: 10.1002/sim.9284. Epub 2022 Jan 2.

Abstract

Motivated by a suicide prevention trial with hierarchical treatment allocation (cluster-level and individual-level treatments), we address the sample size requirements for testing the treatment effects as well as their interaction. We assume a linear mixed model, within which two types of treatment effect estimands (controlled effect and marginal effect) are defined. For each null hypothesis corresponding to an estimand, we derive sample size formulas based on large-sample z-approximation, and provide finite-sample modifications based on a t-approximation. We relax the equal cluster size assumption and express the sample size formulas as functions of the mean and coefficient of variation of cluster sizes. We show that the sample size requirement for testing the controlled effect of the cluster-level treatment is more sensitive to cluster size variability than that for testing the controlled effect of the individual-level treatment; the same observation holds for testing the marginal effects. In addition, we show that the sample size for testing the interaction effect is proportional to that for testing the controlled or the marginal effect of the individual-level treatment. We conduct extensive simulations to validate the proposed sample size formulas, and find the empirical power agrees well with the predicted power for each test. Furthermore, the t-approximations often provide better control of type I error rate with a small number of clusters. Finally, we illustrate our sample size formulas to design the motivating suicide prevention factorial trial. The proposed methods are implemented in the R package H2x2Factorial.

摘要

受一项具有层级治疗分配(群组水平和个体水平治疗)的自杀预防试验的启发,我们解决了用于检验治疗效果及其交互作用的样本量要求。我们假设了一个线性混合模型,其中定义了两种类型的治疗效果估计量(受控效果和边缘效果)。对于每个对应于估计量的零假设,我们基于大样本 z-逼近推导出样本量公式,并基于 t-逼近提供有限样本修正。我们放宽了相等群组大小的假设,并将样本量公式表示为群组大小均值和变异系数的函数。我们表明,检验群组水平治疗的受控效果所需的样本量要求比检验个体水平治疗的受控效果对群组大小变异性更为敏感;对于检验边缘效果,也有同样的观察结果。此外,我们表明,检验交互作用效果所需的样本量与检验个体水平治疗的受控或边缘效果所需的样本量成正比。我们进行了广泛的模拟来验证所提出的样本量公式,发现每个检验的经验功效与预测功效非常吻合。此外,t-逼近通常可以在少量群组的情况下更好地控制第一类错误率。最后,我们使用所提出的样本量公式来说明激励性自杀预防析因试验的设计。所提出的方法在 R 包 H2x2Factorial 中实现。

相似文献

1
Sample size calculation in hierarchical factorial trials with unequal cluster sizes.
Stat Med. 2022 Feb 20;41(4):645-664. doi: 10.1002/sim.9284. Epub 2022 Jan 2.
2
Power analysis for cluster randomized trials with continuous coprimary endpoints.
Biometrics. 2023 Jun;79(2):1293-1305. doi: 10.1111/biom.13692. Epub 2022 May 23.
3
Accounting for unequal cluster sizes in designing cluster randomized trials to detect treatment effect heterogeneity.
Stat Med. 2022 Apr 15;41(8):1376-1396. doi: 10.1002/sim.9283. Epub 2021 Dec 19.
4
Sample size requirements for detecting treatment effect heterogeneity in cluster randomized trials.
Stat Med. 2020 Dec 10;39(28):4218-4237. doi: 10.1002/sim.8721. Epub 2020 Aug 21.
5
Sample size and power calculation for testing treatment effect heterogeneity in cluster randomized crossover designs.
Stat Methods Med Res. 2024 Jul;33(7):1115-1136. doi: 10.1177/09622802241247736. Epub 2024 May 1.
6
Sample size requirements for testing treatment effect heterogeneity in cluster randomized trials with binary outcomes.
Stat Med. 2023 Nov 30;42(27):5054-5083. doi: 10.1002/sim.9901. Epub 2023 Sep 14.
7
Sample size and power considerations for cluster randomized trials with count outcomes subject to right truncation.
Biom J. 2021 Jun;63(5):1052-1071. doi: 10.1002/bimj.202000230. Epub 2021 Mar 10.
8
Power calculation for cross-sectional stepped wedge cluster randomized trials with variable cluster sizes.
Biometrics. 2020 Sep;76(3):951-962. doi: 10.1111/biom.13164. Epub 2019 Nov 14.
9
swdpwr: A SAS macro and an R package for power calculations in stepped wedge cluster randomized trials.
Comput Methods Programs Biomed. 2022 Jan;213:106522. doi: 10.1016/j.cmpb.2021.106522. Epub 2021 Nov 12.

引用本文的文献

4
Consensus Statement for Protocols of Factorial Randomized Trials: Extension of the SPIRIT 2013 Statement.
JAMA Netw Open. 2023 Dec 1;6(12):e2346121. doi: 10.1001/jamanetworkopen.2023.46121.
5
Reporting of Factorial Randomized Trials: Extension of the CONSORT 2010 Statement.
JAMA. 2023 Dec 5;330(21):2106-2114. doi: 10.1001/jama.2023.19793.
6
Sample Size Requirements to Test Subgroup-Specific Treatment Effects in Cluster-Randomized Trials.
Prev Sci. 2024 Jul;25(Suppl 3):356-370. doi: 10.1007/s11121-023-01590-6. Epub 2023 Oct 10.
7
Power analysis for cluster randomized trials with continuous coprimary endpoints.
Biometrics. 2023 Jun;79(2):1293-1305. doi: 10.1111/biom.13692. Epub 2022 May 23.
8
Pragmatic clinical trial design in emergency medicine: Study considerations and design types.
Acad Emerg Med. 2022 Oct;29(10):1247-1257. doi: 10.1111/acem.14513. Epub 2022 May 22.

本文引用的文献

1
Sample size requirements for detecting treatment effect heterogeneity in cluster randomized trials.
Stat Med. 2020 Dec 10;39(28):4218-4237. doi: 10.1002/sim.8721. Epub 2020 Aug 21.
2
Power analysis for cluster randomized trials with multiple binary co-primary endpoints.
Biometrics. 2020 Dec;76(4):1064-1074. doi: 10.1111/biom.13212. Epub 2020 Jan 2.
3
Adapting and implementing Caring Contacts in a Department of Veterans Affairs emergency department: a pilot study protocol.
Pilot Feasibility Stud. 2019 Oct 10;5:115. doi: 10.1186/s40814-019-0503-9. eCollection 2019.
4
Reporting of randomized factorial trials was frequently inadequate.
J Clin Epidemiol. 2020 Jan;117:52-59. doi: 10.1016/j.jclinepi.2019.09.018. Epub 2019 Oct 1.
5
Sample size determination for GEE analyses of stepped wedge cluster randomized trials.
Biometrics. 2018 Dec;74(4):1450-1458. doi: 10.1111/biom.12918. Epub 2018 Jun 19.
6
Statistical Power in Two-Level Hierarchical Linear Models with Arbitrary Number of Factor Levels.
J Stat Plan Inference. 2018 Mar;194:106-121. doi: 10.1016/j.jspi.2017.09.004. Epub 2017 Sep 28.
8
Efficient treatment allocation in 2 × 2 multicenter trials when costs and variances are heterogeneous.
Stat Med. 2018 Jan 15;37(1):12-27. doi: 10.1002/sim.7499. Epub 2017 Sep 25.
9
Review of Recent Methodological Developments in Group-Randomized Trials: Part 2-Analysis.
Am J Public Health. 2017 Jul;107(7):1078-1086. doi: 10.2105/AJPH.2017.303707. Epub 2017 May 18.
10
Efficient treatment allocation in 2 × 2 cluster randomized trials, when costs and variances are heterogeneous.
Stat Med. 2016 Oct 30;35(24):4320-4334. doi: 10.1002/sim.7003. Epub 2016 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验