Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, USA.
Yale Cardiovascular Research Center, 300 George Street, #770G, New Haven, CT, 06511, USA.
J Nucl Cardiol. 2018 Aug;25(4):1148-1155. doi: 10.1007/s12350-017-1158-7. Epub 2018 Jan 22.
Calcific aortic valve disease (CAVD) can progress to symptomatic aortic stenosis in a subset of patients. The severity of aortic stenosis and the extent of valvular calcification can be evaluated readily by echocardiography, CT, and MRI using well-established imaging protocols. However, these techniques fail to address optimally other important aspects of CAVD, including the propensity for disease progression, risk of complications in asymptomatic patients, and the effect of therapeutic interventions on valvular biology. These gaps may be addressed by molecular imaging targeted at key biological processes such as inflammation, remodeling, and calcification that mediate the development and progression of CAVD. In this review, recent advances in valvular molecular imaging, including F-fluorodeoxyglucose (FDG) and F-sodium fluoride (NaF) PET, and matrix metalloproteinase-targeted SPECT imaging in the preclinical and clinical settings are presented and discussed.
钙化性主动脉瓣疾病(CAVD)可在一部分患者中进展为有症状的主动脉瓣狭窄。通过使用成熟的成像方案,超声心动图、CT 和 MRI 可以方便地评估主动脉瓣狭窄的严重程度和瓣叶钙化的程度。然而,这些技术并不能很好地解决 CAVD 的其他重要方面,包括疾病进展的倾向、无症状患者发生并发症的风险以及治疗干预对瓣叶生物学的影响。通过针对炎症、重构和钙化等介导 CAVD 发生和进展的关键生物学过程的分子成像,可以解决这些差距。在这篇综述中,介绍和讨论了瓣膜分子成像的最新进展,包括 F-氟脱氧葡萄糖(FDG)和 F-氟化钠(NaF)正电子发射断层扫描(PET)以及基质金属蛋白酶靶向单光子发射计算机断层扫描(SPECT)成像在临床前和临床环境中的应用。