Erani Paolo, Baleani Massimiliano
Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Italy.
Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Italy.
Clin Biomech (Bristol). 2018 Feb;52:57-65. doi: 10.1016/j.clinbiomech.2018.01.010. Epub 2018 Jan 31.
To ensure stability of proximal femoral fractures, the hip screw must firmly engage into the femoral head. Some studies suggested that screw holding power into trabecular bone could be evaluated, intraoperatively, through measurement of screw insertion torque. However, those studies used synthetic bone, instead of trabecular bone, as host material or they did not evaluate accuracy of predictions. We determined prediction accuracy, also assessing the impact of screw design and host material.
We measured, under highly-repeatable experimental conditions, disregarding clinical procedure complexities, insertion torque and pullout strength of four screw designs, both in 120 synthetic and 80 trabecular bone specimens of variable density. For both host materials, we calculated the root-mean-square error and the mean-absolute-percentage error of predictions based on the best fitting model of torque-pullout data, in both single-screw and merged dataset.
Predictions based on screw-specific regression models were the most accurate. Host material impacts on prediction accuracy: the replacement of synthetic with trabecular bone decreased both root-mean-square errors, from 0.54 ÷ 0.76 kN to 0.21 ÷ 0.40 kN, and mean-absolute-percentage errors, from 14 ÷ 21% to 10 ÷ 12%. However, holding power predicted on low insertion torque remained inaccurate, with errors up to 40% for torques below 1 Nm.
In poor-quality trabecular bone, tissue inhomogeneities likely affect pullout strength and insertion torque to different extents, limiting the predictive power of the latter. This bias decreases when the screw engages good-quality bone. Under this condition, predictions become more accurate although this result must be confirmed by close in-vitro simulation of the clinical procedure.
为确保股骨近端骨折的稳定性,髋螺钉必须牢固地打入股骨头。一些研究表明,术中可通过测量螺钉插入扭矩来评估螺钉在松质骨中的把持力。然而,这些研究使用的是合成骨而非松质骨作为宿主材料,或者未评估预测的准确性。我们确定了预测准确性,同时评估了螺钉设计和宿主材料的影响。
在高度可重复的实验条件下,忽略临床操作的复杂性,测量了四种螺钉设计在120个不同密度的合成骨和80个松质骨标本中的插入扭矩和拔出强度。对于两种宿主材料,我们在单螺钉和合并数据集中,基于扭矩-拔出数据的最佳拟合模型计算了预测的均方根误差和平均绝对百分比误差。
基于特定螺钉回归模型的预测最为准确。宿主材料对预测准确性有影响:用松质骨替代合成骨可降低均方根误差,从0.54÷0.76 kN降至0.21÷0.40 kN,平均绝对百分比误差从14÷21%降至10÷12%。然而,低插入扭矩下预测的把持力仍然不准确,扭矩低于1 Nm时误差高达40%。
在质量较差的松质骨中,组织不均匀性可能对拔出强度和插入扭矩产生不同程度的影响,限制了后者的预测能力。当螺钉打入质量较好的骨时,这种偏差会减小。在这种情况下,预测会变得更准确,尽管这一结果必须通过对临床操作的密切体外模拟来证实。