Suppr超能文献

基于五角形铂铜纳米催化剂的乙二醇电氧化

Ethylene Glycol Electrooxidation Based on Pentangle-Like PtCu Nanocatalysts.

作者信息

Xu Hui, Liu Chaofan, Song Pingping, Wang Jin, Gao Fei, Zhang Yangping, Shiraishi Yukihide, Di Junwei, Du Yukou

机构信息

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.

Tokyo University of Science Yamaguchi, Sanyo-Onoda-shi, Yamaguchi, 756-0884, Japan.

出版信息

Chem Asian J. 2018 Mar 16;13(6):626-630. doi: 10.1002/asia.201800029. Epub 2018 Feb 19.

Abstract

The research of active and stable electrocatalysts toward liquid-fuel oxidation reaction is of great significance for the large-scale commercialization of fuel cells. Although extensive efforts have been devoted to pursuing high-performance nanocatalysts for fuel cells, both the high cost and sluggish reaction kinetics have been two major drawbacks that limited its commercial development. In this regard, we demonstrated a facile solvothermal method for the syntheses of an advanced class of PtCu nanocatalysts with a unique pentangle-like shape. By combining the merits of a highly active surface area as well as the synergistic and electronic effects, the as-prepared pentangle-like Pt Cu nanocatalysts showed superior electrocatalytic activity towards ethylene glycol oxidation with a mass and specific activities of 5162.6 mA mg and 9.7 mA cm , approximately 5.0 and 5.1 times higher than the commercial Pt/C, respectively. More significantly, the Pt Cu pentangle also showed excellent long-term stability with less activity decay and negligible changes in structure after 500 cycles, indicating another class of anode catalysts for fuel cells and beyond.

摘要

开发用于液体燃料氧化反应的活性和稳定的电催化剂对于燃料电池的大规模商业化具有重要意义。尽管人们已经付出了巨大努力来研发用于燃料电池的高性能纳米催化剂,但高成本和缓慢的反应动力学一直是限制其商业发展的两个主要缺点。在这方面,我们展示了一种简便的溶剂热法来合成一类先进的具有独特五角形形状的PtCu纳米催化剂。通过结合高活性表面积以及协同和电子效应的优点,所制备的五角形PtCu纳米催化剂对乙二醇氧化表现出优异的电催化活性,质量活性和比活性分别为5162.6 mA mg和9.7 mA cm,分别比商业Pt/C高约5.0倍和5.1倍。更重要的是,PtCu五角形催化剂还表现出优异的长期稳定性,在500次循环后活性衰减较小且结构变化可忽略不计,这表明它是另一类用于燃料电池及其他领域的阳极催化剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验