Institute of Engineering Innovation, School of Engineering, The University of Tokyo , 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan.
Department of Materials Science, Graduate School of Engineering Science, Akita University , 1-1 Tegata Gakuen-machi, Akita 010-8502, Japan.
Nano Lett. 2018 Feb 14;18(2):754-762. doi: 10.1021/acs.nanolett.7b03967. Epub 2018 Jan 23.
Stable confinement of elemental magnetic nanostructures, such as a single magnetic domain, is fundamental in modern magnetic recording technology. It is well-known that various magnetic textures can be stabilized by geometrical confinement using artificial nanostructures. The magnetic skyrmion, with novel spin texture and promise for future memory devices because of its topological protection and dimension at the nanometer scale, is no exception. So far, skyrmion confinement techniques using large-scale boundaries with limited geometries such as isolated disks and stripes prepared by conventional microfabrication techniques have been used. Here, we demonstrate an alternative technique confining skyrmions to artificial nanostructures (corrals) built from surface pits fabricated by a focused electron beam. Using aberration-corrected differential phase contrast scanning transmission electron microscopy, we directly visualized stable skyrmion states confined at a room temperature to corrals made of artificial surface pits on a thin plate of CoZnMn. We observed a stable single-skyrmion state confined to a triangular corral and a unique transition into a triple-skyrmions state depending on the perpendicular magnetic field. Furthermore, we made an array of stable single-skyrmion states by using concatenated triangular corrals. Artificial control of skyrmion states with the present technique should be a powerful way to realize future nonvolatile memory devices using skyrmions.
稳定地限制元素磁性纳米结构,例如单个磁畴,是现代磁性记录技术的基础。众所周知,可以通过使用人工纳米结构的几何限制来稳定各种磁性纹理。由于其拓扑保护和纳米尺度的维度,具有新颖的自旋纹理并有望用于未来的存储设备的磁斯格明子也不例外。到目前为止,已经使用了使用具有有限几何形状的大规模边界的斯格明子限制技术,例如通过传统微加工技术制备的孤立磁盘和条纹。在这里,我们展示了一种替代技术,可以将斯格明子限制在由聚焦电子束制造的表面凹坑制成的人工纳米结构(围栏)中。使用校正像差的差分相位对比扫描透射电子显微镜,我们直接观察到在 CoZnMn 薄盘上的人工表面凹坑制成的围栏中,在室温下稳定的斯格明子状态。我们观察到稳定的单斯格明子状态限制在三角形围栏中,并根据垂直磁场发生独特的转变为三斯格明子状态。此外,我们通过使用串联的三角形围栏制得稳定的单斯格明子状态阵列。使用当前技术对斯格明子状态进行人工控制应该是实现使用斯格明子的未来非易失性存储设备的一种有效方法。