Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, People's Republic of China.
University of CAS , Beijing 100049, People's Republic of China.
Nano Lett. 2018 Feb 14;18(2):1516-1521. doi: 10.1021/acs.nanolett.7b05314. Epub 2018 Jan 25.
Designing high-quality interfaces is crucial for high-performance photoelectrochemical (PEC) water-splitting devices. Here, we demonstrate a facile integration between polycrystalline np-Si and NiFe-layered double hydroxide (LDH) nanosheet array by a partially activated Ni (Ni/NiO) bridging layer for the excellent PEC water oxidation. In this model system, the thermally deposited Ni interlayer protects Si against corrosion and makes good contact with Si, and NiO has a high capacity of hole accumulation and strong bonding with the electrodeposited NiFe-LDH due to the similarity in material composition and structure, facilitating transfer of accumulated holes to the catalyst. In addition, the back illumination configuration makes NiFe-LDH sufficiently thick for more catalytically active sites without compromising Si light absorption. This earth-abundant multicomponent photoanode affords the PEC performance with an onset potential of ∼0.78 V versus reversible hydrogen electrode (RHE), a photocurrent density of ∼37 mA cm at 1.23 V versus RHE, and retains good stability in 1.0 M KOH, the highest water oxidation activity so far reported for the crystalline Si-based photoanodes. This bridging layer strategy is efficient and simple to smooth charge transfer and make robust contact at the semiconductor/electrocatalyst interface in the solar water-splitting systems.
设计高质量的界面对于高性能光电化学(PEC)水分解器件至关重要。在这里,我们通过部分激活的 Ni(Ni/NiO)桥接层将多晶 np-Si 和 NiFe 层状双氢氧化物(LDH)纳米片阵列进行了简便的集成,用于优异的 PEC 水氧化。在该模型系统中,热沉积的 Ni 夹层保护 Si 免受腐蚀并与 Si 形成良好的接触,而 NiO 由于具有相似的材料组成和结构,具有较强的空穴积累能力和与电沉积的 NiFe-LDH 的强结合能力,有利于将积累的空穴转移到催化剂上。此外,背照配置使 NiFe-LDH 足够厚,具有更多的催化活性位点,而不会影响 Si 的光吸收。这种丰富的多组分光阳极提供了 PEC 性能,起始电位约为 0.78 V 相对于可逆氢电极(RHE),在 1.23 V 相对于 RHE 时的光电流密度约为 37 mA cm,在 1.0 M KOH 中保持良好的稳定性,这是迄今为止报道的用于基于结晶 Si 的光阳极的最高水氧化活性。这种桥接层策略高效且简单,可在太阳能水分解系统中的半导体/电催化剂界面处平滑电荷转移并形成坚固的接触。