Suppr超能文献

过氧化物酶系统抵抗高浓度过氧化氢介导的氧化应激导致的失活。

Peroxiredoxin System of Resists Inactivation by High Concentration of Hydrogen Peroxide-Mediated Oxidative Stress.

作者信息

Xia Yang, Yu Haijun, Zhou Zhemin, Takaya Naoki, Zhou Shengmin, Wang Ping

机构信息

State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P.R. China.

School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.

出版信息

J Microbiol Biotechnol. 2018 Jan 28;28(1):145-156. doi: 10.4014/jmb.1707.07024.

Abstract

Most eukaryotic peroxiredoxins (Prxs) are readily inactivated by a high concentration of hydrogen peroxide (H₂O₂) during catalysis owing to their "GGLG" and "YF" motifs. However, such oxidative stress sensitive motifs were not found in the previously identified filamentous fungal Prxs. Additionally, the information on filamentous fungal Prxs is limited and fragmentary. Herein, we cloned and gained insight into Prx (An.PrxA) in the aspects of protein properties, catalysis characteristics, and especially H₂O₂ tolerability. Our results indicated that An.PrxA belongs to the newly defined family of typical 2-Cys Prxs with a marked characteristic that the "resolving" cysteine (C) is invertedly located preceding the "peroxidatic" cysteine (C) in amino acid sequences. The inverted arrangement of C and C can only be found among some yeast, bacterial, and filamentous fungal deduced Prxs. The most surprising characteristic of An.PrxA is its extraordinary ability to resist inactivation by extremely high concentrations of H₂O₂, even that approaching 600 mM. By screening the H₂O₂-inactivation effects on the components of Prx systems, including Trx, Trx reductase (TrxR), and Prx, we ultimately determined that it is the robust filamentous fungal TrxR rather than Trx and Prx that is responsible for the extreme H₂O₂ tolerence of the An.PrxA system. This is the first investigation on the effect of the electron donor partner in the H₂O₂ tolerability of the Prx system.

摘要

大多数真核生物过氧化物酶(Prxs)在催化过程中容易被高浓度的过氧化氢(H₂O₂)灭活,这是由于它们具有“GGLG”和“YF”基序。然而,在先前鉴定的丝状真菌Prxs中未发现这种对氧化应激敏感的基序。此外,关于丝状真菌Prxs的信息有限且不完整。在此,我们克隆了Prx(An.PrxA),并在蛋白质特性、催化特性,尤其是对H₂O₂的耐受性方面进行了深入研究。我们的结果表明,An.PrxA属于新定义的典型2-Cys Prxs家族,其显著特征是在氨基酸序列中,“还原”半胱氨酸(C)位于“过氧化物酶”半胱氨酸(C)之前。C和C的这种反向排列仅在一些酵母、细菌和丝状真菌推导的Prxs中发现。An.PrxA最令人惊讶的特征是其具有非凡的能力,能够抵抗极高浓度H₂O₂的灭活作用,甚至接近600 mM的H₂O₂。通过筛选H₂O₂对Prx系统各组分(包括Trx、Trx还原酶(TrxR)和Prx)的灭活作用,我们最终确定,是强大的丝状真菌TrxR而非Trx和Prx赋予了An.PrxA系统对极端H₂O₂的耐受性。这是首次关于电子供体伙伴对Prx系统H₂O₂耐受性影响的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验