Suppr超能文献

生物信息学分析鉴定脑胶质瘤中的关键基因和通路。

The Identification of Key Genes and Pathways in Glioma by Bioinformatics Analysis.

机构信息

Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China.

Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China.

出版信息

J Immunol Res. 2017;2017:1278081. doi: 10.1155/2017/1278081. Epub 2017 Dec 6.

Abstract

Glioma is the most common malignant tumor in the central nervous system. This study aims to explore the potential mechanism and identify gene signatures of glioma. The glioma gene expression profile GSE4290 was analyzed for differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were applied for the enriched pathways. A protein-protein interaction (PPI) network was constructed to find the hub genes. Survival analysis was conducted to screen and validate critical genes. In this study, 775 downregulated DEGs were identified. GO analysis demonstrated that the DEGs were enriched in cellular protein modification, regulation of cell communication, and regulation of signaling. KEGG analysis indicated that the DEGs were enriched in the MAPK signaling pathway, endocytosis, oxytocin signaling, and calcium signaling. PPI network and module analysis found 12 hub genes, which were enriched in synaptic vesicle cycling rheumatoid arthritis and collecting duct acid secretion. The four key genes CDK17, GNA13, PHF21A, and MTHFD2 were identified in both generation (GSE4412) and validation (GSE4271) dataset, respectively. Regression analysis showed that CDK13, PHF21A, and MTHFD2 were independent predictors. The results suggested that CDK17, GNA13, PHF21A, and MTHFD2 might play important roles and potentially be valuable in the prognosis and treatment of glioma.

摘要

脑胶质瘤是中枢神经系统最常见的恶性肿瘤。本研究旨在探讨脑胶质瘤的潜在机制和鉴定基因特征。分析了脑胶质瘤基因表达谱 GSE4290 以鉴定差异表达基因(DEGs)。应用基因本体论(GO)和京都基因与基因组百科全书(KEGG)分析对富集通路进行分析。构建蛋白质-蛋白质相互作用(PPI)网络以找到关键基因。进行生存分析以筛选和验证关键基因。本研究鉴定出 775 个下调的 DEGs。GO 分析表明 DEGs 富集在细胞蛋白修饰、细胞通讯调节和信号转导调节中。KEGG 分析表明 DEGs 富集在 MAPK 信号通路、内吞作用、催产素信号和钙信号中。PPI 网络和模块分析发现了 12 个关键基因,这些基因富集在突触囊泡循环类风湿关节炎和集合管酸分泌中。在生成(GSE4412)和验证(GSE4271)数据集中共鉴定出四个关键基因 CDK17、GNA13、PHF21A 和 MTHFD2。回归分析表明 CDK13、PHF21A 和 MTHFD2 是独立的预测因子。结果表明,CDK17、GNA13、PHF21A 和 MTHFD2 可能在脑胶质瘤的预后和治疗中发挥重要作用,具有潜在价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ba/5736927/6c9b715b16b8/JIR2017-1278081.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验