Suppr超能文献

利用生物信息学策略鉴定甲状腺癌潜在生物标志物:基于GEO数据集的研究

Identification of Potential Biomarkers for Thyroid Cancer Using Bioinformatics Strategy: A Study Based on GEO Datasets.

作者信息

Shen Yujie, Dong Shikun, Liu Jinhui, Zhang Liqing, Zhang Jiacheng, Zhou Han, Dong Weida

机构信息

Department of Otorhinolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu, China.

Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu, China.

出版信息

Biomed Res Int. 2020 Apr 1;2020:9710421. doi: 10.1155/2020/9710421. eCollection 2020.

Abstract

BACKGROUND

The molecular mechanisms and genetic markers of thyroid cancer are unclear. In this study, we used bioinformatics to screen for key genes and pathways associated with thyroid cancer development and to reveal its potential molecular mechanisms.

METHODS

The GSE3467, GSE3678, GSE33630, and GSE53157 expression profiles downloaded from the Gene Expression Omnibus database (GEO) contained a total of 164 tissue samples (64 normal thyroid tissue samples and 100 thyroid cancer samples). The four datasets were integrated and analyzed by the RobustRankAggreg (RRA) method to obtain differentially expressed genes (DEGs). Using these DEGs, we performed gene ontology (GO) functional annotation, pathway analysis, protein-protein interaction (PPI) analysis and survival analysis. Then, CMap was used to identify the candidate small molecules that might reverse thyroid cancer gene expression.

RESULTS

By integrating the four datasets, 330 DEGs, including 154 upregulated and 176 downregulated genes, were identified. GO analysis showed that the upregulated genes were mainly involved in extracellular region, extracellular exosome, and heparin binding. The downregulated genes were mainly concentrated in thyroid hormone generation and proteinaceous extracellular matrix. Pathway analysis showed that the upregulated DEGs were mainly attached to ECM-receptor interaction, p53 signaling pathway, and TGF-beta signaling pathway. Downregulation of DEGs was mainly involved in tyrosine metabolism, mineral absorption, and thyroxine biosynthesis. Among the top 30 hub genes obtained in PPI network, the expression levels of FN1, NMU, CHRDL1, GNAI1, ITGA2, GNA14 and AVPR1A were associated with the prognosis of thyroid cancer. Finally, four small molecules that could reverse the gene expression induced by thyroid cancer, namely ikarugamycin, adrenosterone, hexamethonium bromide and clofazimine, were obtained in the CMap database.

CONCLUSION

The identification of the key genes and pathways enhances the understanding of the molecular mechanisms for thyroid cancer. In addition, these key genes may be potential therapeutic targets and biomarkers for the treatment of thyroid cancer.

摘要

背景

甲状腺癌的分子机制和遗传标志物尚不清楚。在本研究中,我们利用生物信息学筛选与甲状腺癌发生相关的关键基因和通路,并揭示其潜在的分子机制。

方法

从基因表达综合数据库(GEO)下载的GSE3467、GSE3678、GSE33630和GSE53157表达谱共包含164个组织样本(64个正常甲状腺组织样本和100个甲状腺癌样本)。采用稳健排序聚合(RRA)方法对这四个数据集进行整合和分析,以获得差异表达基因(DEG)。利用这些DEG进行基因本体(GO)功能注释、通路分析、蛋白质-蛋白质相互作用(PPI)分析和生存分析。然后,使用CMap鉴定可能逆转甲状腺癌基因表达的候选小分子。

结果

通过整合这四个数据集,共鉴定出330个DEG,其中上调基因154个,下调基因176个。GO分析表明,上调基因主要参与细胞外区域、细胞外囊泡和肝素结合。下调基因主要集中在甲状腺激素生成和蛋白质细胞外基质。通路分析表明,上调的DEG主要与细胞外基质-受体相互作用、p53信号通路和转化生长因子-β信号通路相关。DEG的下调主要涉及酪氨酸代谢、矿物质吸收和甲状腺素生物合成。在PPI网络中获得的前30个枢纽基因中,FN1、NMU、CHRDL1、GNAI1、ITGA2、GNA14和AVPR1A的表达水平与甲状腺癌的预后相关。最后,在CMap数据库中获得了四种能够逆转甲状腺癌诱导的基因表达的小分子,即伊卡鲁霉素、肾上腺酮、溴化六甲铵和氯法齐明。

结论

关键基因和通路的鉴定增强了对甲状腺癌分子机制的理解。此外,这些关键基因可能是治疗甲状腺癌的潜在治疗靶点和生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a471/7152968/c3ae12eb7d95/BMRI2020-9710421.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验