Suppr超能文献

在大肠杆菌中生产芹菜素的工程共培养系统。

Engineering co-culture system for production of apigetrin in Escherichia coli.

机构信息

Center for Molecular Biology, Duy Tan University, 03 Quang Trung Street, Haichau District, Danang, Vietnam.

Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.

出版信息

J Ind Microbiol Biotechnol. 2018 Mar;45(3):175-185. doi: 10.1007/s10295-018-2012-x. Epub 2018 Jan 24.

Abstract

Microbial cells have extensively been utilized to produce value-added bioactive compounds. Based on advancement in protein engineering, DNA recombinant technology, genome engineering, and metabolic remodeling, the microbes can be re-engineered to produce industrially and medicinally important platform chemicals. The emergence of co-culture system which reduces the metabolic burden and allows parallel optimization of the engineered pathway in a modular fashion restricting the formation of undesired byproducts has become an alternative way to synthesize and produce bioactive compounds. In this study, we present genetically engineered E. coli-based co-culture system to the de novo synthesis of apigetrin (APG), an apigenin-7-O-β-D-glucopyranoside of apigenin. The culture system consists of an upstream module including 4-coumarate: CoA ligase (4CL), chalcone synthase, chalcone flavanone isomerase (CHS, CHI), and flavone synthase I (FNSI) to synthesize apigenin (API) from p-coumaric acid (PCA). Whereas, the downstream system contains a metabolizing module to enhance the production of UDP-glucose and expression of glycosyltransferase (PaGT3) to convert API into APG. To accomplish this improvement in titer, the initial inoculum ratio of strains for making the co-culture system, temperature, and media component was optimized. Following large-scale production, a yield of 38.5 µM (16.6 mg/L) of APG was achieved. In overall, this study provided an efficient tool to synthesize bioactive compounds in microbial cells.

摘要

微生物细胞已被广泛用于生产有价值的生物活性化合物。基于蛋白质工程、DNA 重组技术、基因组工程和代谢重塑的进步,微生物可以被重新设计以生产具有工业和医学重要性的平台化学品。共培养系统的出现降低了代谢负担,并允许以模块化方式并行优化工程途径,限制了不需要的副产物的形成,已成为合成和生产生物活性化合物的替代方法。在这项研究中,我们提出了基于基因工程的大肠杆菌共培养系统,用于从头合成芹菜素-7-O-β-D-吡喃葡萄糖苷(APG),即芹菜素的一种芹菜素-7-O-β-D-葡萄糖苷。该培养系统包括一个上游模块,包括 4-香豆酸:CoA 连接酶(4CL)、查尔酮合酶、查尔酮黄酮异构酶(CHS、CHI)和黄酮合酶 I(FNSI),用于从对香豆酸(PCA)合成芹菜素(API)。而下游系统包含一个代谢模块,用于增强 UDP-葡萄糖的产量和糖基转移酶(PaGT3)的表达,以将 API 转化为 APG。为了提高产量,优化了用于构建共培养系统的菌株的初始接种比例、温度和培养基成分。经过大规模生产,获得了 38.5µM(16.6mg/L)的 APG 产量。总的来说,这项研究为在微生物细胞中合成生物活性化合物提供了一种有效的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验