Suppr超能文献

富镍 LiNiCoMnO(NCM)(y≤0.1)正极的表面偏析和各向异性的从头算研究。

Ab Initio Study on Surface Segregation and Anisotropy of Ni-Rich LiNiCoMnO (NCM) (y ≤ 0.1) Cathodes.

机构信息

State Key Laboratory of Powder Metallurgy, Central South University , Changsha, Hunan 410083, China.

Materials Science & Engineering Department, The University of Texas at Dallas , Richardson, Texas 75080, United States.

出版信息

ACS Appl Mater Interfaces. 2018 Feb 21;10(7):6673-6680. doi: 10.1021/acsami.7b17424. Epub 2018 Feb 12.

Abstract

Advances in ex situ and in situ (operando) characteristic techniques have unraveled unprecedented atomic details in the electrochemical reaction of Li-ion batteries. To bridge the gap between emerging evidences and practical material development, an elaborate understanding on the electrochemical properties of cathode materials on the atomic scale is urgently needed. In this work, we perform comprehensive first-principle calculations within the density functional theory + U framework on the surface stability, morphology, and elastic anisotropy of Ni-rich LiNiCoMnO (NCM) (y ≤ 0.1) cathode materials, which are strongly related to the emerging evidence in the degradation of Li-ion batteries. On the basis of the surface stability results, the equilibrium particle morphology is obtained, which is mainly determined by the oxygen chemical potential. Ni-rich NCM particles are terminated mostly by the (012) and (001) surfaces for oxygen-poor conditions, whereas the termination corresponds to the (104) and (001) surfaces for oxygen-rich conditions. Besides, Ni surface segregation predominantly occurs on the (100), (110), and (104) nonpolar surfaces, showing a tendency to form a rocksalt NiO domain on the surface because of severe Li-Ni exchange. The observed elastic anisotropy reveals that an uneven deformation is more likely to be formed in the particles synthesized under poor-oxygen conditions, leading to crack generation and propagation. Our findings provide a deep understanding of the surface properties and degradation of Ni-rich NCM particles, thereby proposing possible solution mechanisms to the factors affecting degradation, such as synthesis conditions, coating, or novel nanostructures.

摘要

原位和非原位(operando)特征技术的进步揭示了锂离子电池电化学反应中前所未有的原子细节。为了弥合新兴证据与实际材料开发之间的差距,迫切需要在原子尺度上对正极材料的电化学性能有一个精细的认识。在这项工作中,我们使用基于密度泛函理论+ U 的第一性原理计算方法,对富镍 LiNiCoMnO(NCM)(y≤0.1)正极材料的表面稳定性、形态和弹性各向异性进行了全面的研究,这些性质与锂离子电池降解的新兴证据密切相关。基于表面稳定性的研究结果,我们得到了平衡的颗粒形态,它主要由氧化学势决定。在贫氧条件下,富镍 NCM 颗粒主要由(012)和(001)面终止,而在富氧条件下,终止对应于(104)和(001)面。此外,Ni 表面偏析主要发生在(100)、(110)和(104)非极性表面上,由于严重的 Li-Ni 交换,表面上倾向于形成岩盐 NiO 畴。观察到的弹性各向异性表明,在贫氧条件下合成的颗粒中更容易形成不均匀的变形,从而导致裂纹的产生和扩展。我们的发现深入了解了富镍 NCM 颗粒的表面性质和降解机制,从而为影响降解的因素(如合成条件、涂层或新型纳米结构)提出了可能的解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验