Taborosi Attila, Shiiba Hiromasa, Koyama Michihisa, Zettsu Nobuyuki
Research Initiative for Supra-Materials, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Nagano Prefecture, Japan.
Department of Material Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Nagano Prefecture, Japan.
ACS Omega. 2024 Oct 1;9(41):42116-42126. doi: 10.1021/acsomega.4c02484. eCollection 2024 Oct 15.
LiNi Mn Co O (NCM) is a promising cathode material for lithium-ion batteries. Their long-term stability and impedance growth as cycles are strongly influenced by the properties of the cathode electrolyte interface (CEI), formed by the reaction between the electrolyte and electrode surface. Understanding of these interactions at the atomic level of the NCM electrode surface and electrolyte will provide a new strategic approach for the design of a highly functional CEI layer. In this study, we explored the influence of Ni content in transition metal layers on surface energies under different synthetic conditions and terminations using a density functional theory (DFT) validated universal neural network potential (UNNP) method. Furthermore, we investigated the adsorption of ethylene carbonate (EC) and dimethyl carbonate (DMC) on the most favorable NCM surfaces. EC and DMC displayed similar adsorption energy trends; however, differences were observed in the preferred configurations, which can affect the formation of the CEI.
LiNiMnCoO(NCM)是一种很有前景的锂离子电池正极材料。其长期稳定性和循环过程中的阻抗增长受到由电解质与电极表面反应形成的阴极电解质界面(CEI)性质的强烈影响。在NCM电极表面和电解质的原子水平上理解这些相互作用将为设计高功能CEI层提供一种新的策略方法。在本研究中,我们使用密度泛函理论(DFT)验证的通用神经网络势(UNNP)方法,探索了不同合成条件和终止情况下过渡金属层中镍含量对表面能的影响。此外,我们研究了碳酸亚乙酯(EC)和碳酸二甲酯(DMC)在最有利的NCM表面上的吸附。EC和DMC表现出相似的吸附能趋势;然而,在优选构型上观察到差异,这可能会影响CEI的形成。