Suppr超能文献

转酮醇酶可对抗氧化应激以推动癌症发展。

Transketolase counteracts oxidative stress to drive cancer development.

作者信息

Xu Iris Ming-Jing, Lai Robin Kit-Ho, Lin Shu-Hai, Tse Aki Pui-Wah, Chiu David Kung-Chun, Koh Hui-Yu, Law Cheuk-Ting, Wong Chun-Ming, Cai Zongwei, Wong Carmen Chak-Lui, Ng Irene Oi-Lin

机构信息

Department of Pathology, The University of Hong Kong, Hong Kong, SAR, China;

Department of Chemistry,Hong Kong Baptist University, Hong Kong, SAR, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, SAR, China;

出版信息

Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):E725-34. doi: 10.1073/pnas.1508779113. Epub 2016 Jan 25.

Abstract

Cancer cells experience an increase in oxidative stress. The pentose phosphate pathway (PPP) is a major biochemical pathway that generates antioxidant NADPH. Here, we show that transketolase (TKT), an enzyme in the PPP, is required for cancer growth because of its ability to affect the production of NAPDH to counteract oxidative stress. We show that TKT expression is tightly regulated by the Nuclear Factor, Erythroid 2-Like 2 (NRF2)/Kelch-Like ECH-Associated Protein 1 (KEAP1)/BTB and CNC Homolog 1 (BACH1) oxidative stress sensor pathway in cancers. Disturbing the redox homeostasis of cancer cells by genetic knockdown or pharmacologic inhibition of TKT sensitizes cancer cells to existing targeted therapy (Sorafenib). Our study strengthens the notion that antioxidants are beneficial to cancer growth and highlights the therapeutic benefits of targeting pathways that generate antioxidants.

摘要

癌细胞的氧化应激增加。磷酸戊糖途径(PPP)是产生抗氧化剂NADPH的主要生化途径。在此,我们表明转酮醇酶(TKT)作为PPP中的一种酶,因其影响NAPDH产生以对抗氧化应激的能力而成为癌症生长所必需。我们表明,在癌症中,TKT表达受核因子红系2样2(NRF2)/ Kelch样ECH相关蛋白1(KEAP1)/ BTB和CNC同源物1(BACH1)氧化应激传感器途径的严格调控。通过基因敲低或药物抑制TKT来破坏癌细胞的氧化还原稳态,可使癌细胞对现有的靶向治疗(索拉非尼)敏感。我们的研究强化了抗氧化剂对癌症生长有益的观念,并突出了靶向产生抗氧化剂途径的治疗益处。

相似文献

1
Transketolase counteracts oxidative stress to drive cancer development.
Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):E725-34. doi: 10.1073/pnas.1508779113. Epub 2016 Jan 25.
3
Nrf2-driven TERT regulates pentose phosphate pathway in glioblastoma.
Cell Death Dis. 2016 May 5;7(5):e2213. doi: 10.1038/cddis.2016.117.
7
Cryptotanshinone strengthens the effect of gefitinib against non-small cell lung cancer through inhibiting transketolase.
Eur J Pharmacol. 2021 Jan 5;890:173647. doi: 10.1016/j.ejphar.2020.173647. Epub 2020 Oct 10.
8
Transketolase in human Müller cells is critical to resist light stress through the pentose phosphate and NRF2 pathways.
Redox Biol. 2022 Aug;54:102379. doi: 10.1016/j.redox.2022.102379. Epub 2022 Jun 24.
9
Improvement of neuronal differentiation by carbon monoxide: Role of pentose phosphate pathway.
Redox Biol. 2018 Jul;17:338-347. doi: 10.1016/j.redox.2018.05.004. Epub 2018 May 15.

引用本文的文献

2
Thiamine Mitigates the Toxicity of Methylmercury in Cultured Fetal Fibroblast Cell Lines.
Cell Biochem Biophys. 2025 Jul 21. doi: 10.1007/s12013-025-01841-z.
4
Thiamine (Vitamin B1)-An Essential Health Regulator.
Nutrients. 2025 Jul 2;17(13):2206. doi: 10.3390/nu17132206.
6
Impaired airway epithelial miR-155/BACH1/NRF2 axis and hypoxia gene expression during RSV infection in children with down syndrome.
Front Pediatr. 2025 May 21;13:1553571. doi: 10.3389/fped.2025.1553571. eCollection 2025.
8
Glucose- and glutamine-driven de novo nucleotide synthesis facilitates WSSV replication in shrimp.
Cell Commun Signal. 2025 Apr 22;23(1):191. doi: 10.1186/s12964-025-02186-z.
9
The role of transketolase in the immunotherapy and prognosis of hepatocellular carcinoma: a multi-omics approach.
Front Immunol. 2025 Mar 31;16:1529029. doi: 10.3389/fimmu.2025.1529029. eCollection 2025.
10
Thirty years of NRF2: advances and therapeutic challenges.
Nat Rev Drug Discov. 2025 Mar 4. doi: 10.1038/s41573-025-01145-0.

本文引用的文献

1
Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression.
Cancer Cell. 2015 Feb 9;27(2):211-22. doi: 10.1016/j.ccell.2014.11.019. Epub 2015 Jan 22.
2
Switching of pyruvate kinase isoform L to M2 promotes metabolic reprogramming in hepatocarcinogenesis.
PLoS One. 2014 Dec 26;9(12):e115036. doi: 10.1371/journal.pone.0115036. eCollection 2014.
4
Quantitative flux analysis reveals folate-dependent NADPH production.
Nature. 2014 Jun 12;510(7504):298-302. doi: 10.1038/nature13236. Epub 2014 May 4.
5
A critical role of glucose-6-phosphate dehydrogenase in TAp73-mediated cell proliferation.
Cell Cycle. 2013 Dec 15;12(24):3720-6. doi: 10.4161/cc.27267. Epub 2013 Nov 21.
6
TAp73 enhances the pentose phosphate pathway and supports cell proliferation.
Nat Cell Biol. 2013 Aug;15(8):991-1000. doi: 10.1038/ncb2789. Epub 2013 Jun 30.
7
Physiological roles of mitochondrial reactive oxygen species.
Mol Cell. 2012 Oct 26;48(2):158-67. doi: 10.1016/j.molcel.2012.09.025.
8
Redox regulation of cancer cell migration and invasion.
Mitochondrion. 2013 May;13(3):246-53. doi: 10.1016/j.mito.2012.08.002. Epub 2012 Aug 27.
9
Sorafenib-induced hepatocellular carcinoma cell death depends on reactive oxygen species production in vitro and in vivo.
Mol Cancer Ther. 2012 Oct;11(10):2284-93. doi: 10.1158/1535-7163.MCT-12-0093. Epub 2012 Aug 17.
10
Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming.
Cancer Cell. 2012 Jul 10;22(1):66-79. doi: 10.1016/j.ccr.2012.05.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验