文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

载替莫唑胺的固体脂质纳米粒用于黑素瘤治疗的初步体外与体内研究。

Solid Lipid Nanoparticles Carrying Temozolomide for Melanoma Treatment. Preliminary In Vitro and In Vivo Studies.

机构信息

Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy.

Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10124 Torino, Italy.

出版信息

Int J Mol Sci. 2018 Jan 24;19(2):255. doi: 10.3390/ijms19020255.


DOI:10.3390/ijms19020255
PMID:29364157
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5855544/
Abstract

AIM: To develop an innovative delivery system for temozolomide (TMZ) in solid lipid nanoparticles (SLN), which has been preliminarily investigated for the treatment of melanoma. MATERIALS AND METHODS: SLN-TMZ was obtained through fatty acid coacervation. Its pharmacological effects were assessed and compared with free TMZ in in vitro and in vivo models of melanoma and glioblastoma. RESULTS: Compared to the standard free TMZ, SLN-TMZ exerted larger effects, when cell proliferation of melanoma cells, and neoangiogeneis were evaluated. SLN-TMZ also inhibited growth and vascularization of B16-F10 melanoma in C57/BL6 mice, without apparent toxic effects. CONCLUSION: SLN could be a promising strategy for the delivery of TMZ, allowing an increased stability of the drug and thereby its employment in the treatment of aggressive malignacies.

摘要

目的:开发替莫唑胺(TMZ)的固体脂质纳米粒(SLN)新型递药系统,该系统初步用于治疗黑色素瘤。

材料与方法:通过脂肪酸共凝聚法获得 SLN-TMZ。评估其在黑色素瘤和神经胶质瘤的体外和体内模型中的药效,并与游离 TMZ 进行比较。

结果:与标准游离 TMZ 相比,当评估黑色素瘤细胞的细胞增殖和新生血管生成时,SLN-TMZ 发挥了更大的作用。SLN-TMZ 还能抑制 C57/BL6 小鼠中 B16-F10 黑色素瘤的生长和血管生成,且无明显毒性作用。

结论:SLN 可能是 TMZ 递药的一种有前途的策略,增加了药物的稳定性,从而可用于治疗侵袭性恶性肿瘤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/eaa1fb3da94b/ijms-19-00255-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/07c9d09c72c5/ijms-19-00255-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/066f3dbbae91/ijms-19-00255-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/4d4029482d12/ijms-19-00255-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/11ddf69d8473/ijms-19-00255-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/9b9afaa33bb0/ijms-19-00255-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/875592f73fef/ijms-19-00255-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/ada7fc9e59bc/ijms-19-00255-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/4651171fe433/ijms-19-00255-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/b16b759949c3/ijms-19-00255-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/6c55fb2d94dd/ijms-19-00255-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/38785e6037dc/ijms-19-00255-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/eaa1fb3da94b/ijms-19-00255-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/07c9d09c72c5/ijms-19-00255-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/066f3dbbae91/ijms-19-00255-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/4d4029482d12/ijms-19-00255-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/11ddf69d8473/ijms-19-00255-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/9b9afaa33bb0/ijms-19-00255-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/875592f73fef/ijms-19-00255-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/ada7fc9e59bc/ijms-19-00255-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/4651171fe433/ijms-19-00255-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/b16b759949c3/ijms-19-00255-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/6c55fb2d94dd/ijms-19-00255-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/38785e6037dc/ijms-19-00255-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a44/5855544/eaa1fb3da94b/ijms-19-00255-g012.jpg

相似文献

[1]
Solid Lipid Nanoparticles Carrying Temozolomide for Melanoma Treatment. Preliminary In Vitro and In Vivo Studies.

Int J Mol Sci. 2018-1-24

[2]
The glutathione transferase inhibitor 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) increases temozolomide efficacy against malignant melanoma.

Eur J Cancer. 2011-1-25

[3]
Formulation of temozolomide-loaded nanoparticles and their targeting potential to melanoma cells.

Oncol Rep. 2017-2

[4]
Effect of Lonidamine on Systemic Therapy of DB-1 Human Melanoma Xenografts with Temozolomide.

Anticancer Res. 2017-7

[5]
NRF2 and glutathione are key resistance mediators to temozolomide in glioma and melanoma cells.

Oncotarget. 2016-7-26

[6]
A novel temozolomide analog, NEO212, with enhanced activity against MGMT-positive melanoma in vitro and in vivo.

Cancer Lett. 2015-3-28

[7]
Metastatic Melanoma: A Preclinical Model Standardization and Development of a Chitosan-Coated Nanoemulsion Containing Temozolomide to Treat Brain Metastasis.

Cell Mol Neurobiol. 2023-8

[8]
Systemic administration of GPI 15427, a novel poly(ADP-ribose) polymerase-1 inhibitor, increases the antitumor activity of temozolomide against intracranial melanoma, glioma, lymphoma.

Clin Cancer Res. 2003-11-1

[9]
Vincristine and temozolomide combined chemotherapy for the treatment of glioma: a comparison of solid lipid nanoparticles and nanostructured lipid carriers for dual drugs delivery.

Drug Deliv. 2015-7-23

[10]
A tumor-targeting p53 nanodelivery system limits chemoresistance to temozolomide prolonging survival in a mouse model of glioblastoma multiforme.

Nanomedicine. 2015-2

引用本文的文献

[1]
Solid Lipid Nanoparticles for the Management of Hypertension: Advancements and Challenges.

Curr Pharm Des. 2025

[2]
Synthesis, Cytotoxicity and Antiproliferative Effect of New Pyrrole Hydrazones.

Molecules. 2024-11-21

[3]
Enhanced Delivery and Potency of Chemotherapeutics in Melanoma Treatment via Magnetite Nanobioconjugates.

ACS Omega. 2024-10-30

[4]
Green Solid Lipid Nanoparticles by Fatty Acid Coacervation: An Innovative Nasal Delivery Tool for Drugs Targeting Cerebrovascular and Neurological Diseases.

Pharmaceutics. 2024-8-8

[5]
Application of Nanoparticles in Cancer Treatment: A Concise Review.

Nanomaterials (Basel). 2023-10-31

[6]
Nanoparticle-Based Treatment Approaches for Skin Cancer: A Systematic Review.

Curr Oncol. 2023-7-25

[7]
Metastatic Melanoma: A Preclinical Model Standardization and Development of a Chitosan-Coated Nanoemulsion Containing Temozolomide to Treat Brain Metastasis.

Cell Mol Neurobiol. 2023-8

[8]
Solid Lipid Nanoparticles: Multitasking Nano-Carriers for Cancer Treatment.

Pharmaceutics. 2023-3-3

[9]
Advancements in nanoparticle-based treatment approaches for skin cancer therapy.

Mol Cancer. 2023-1-12

[10]
Parenteral Nanoemulsions Loaded with Combined Immuno- and Chemo-Therapy for Melanoma Treatment.

Nanomaterials (Basel). 2022-11-28

本文引用的文献

[1]
Recent advances in malignant melanoma.

Intern Med J. 2017-10

[2]
Overcoming blood brain barrier with a dual purpose Temozolomide loaded Lactoferrin nanoparticles for combating glioma (SERP-17-12433).

Sci Rep. 2017-7-26

[3]
Formulation of temozolomide-loaded nanoparticles and their targeting potential to melanoma cells.

Oncol Rep. 2017-2

[4]
Drug Delivery Nanoparticles in Treating Chemoresistant Tumor Cells.

Curr Med Chem. 2017

[5]
Thrombin Cleavage of Osteopontin Modulates Its Activities in Human Cells In Vitro and Mouse Experimental Autoimmune Encephalomyelitis In Vivo.

J Immunol Res. 2016-7-13

[6]
Solid lipid nanoparticles carrying lipophilic derivatives of doxorubicin: preparation, characterization, and in vitro cytotoxicity studies.

J Microencapsul. 2016-6

[7]
Temozolomide-loaded PLGA nanoparticles to treat glioblastoma cells: a biophysical and cell culture evaluation.

Neurol Res. 2016-1

[8]
Encapsulation of temozolomide in a tumor-targeting nanocomplex enhances anti-cancer efficacy and reduces toxicity in a mouse model of glioblastoma.

Cancer Lett. 2015-12-1

[9]
Temozolomide nanoparticles for targeted glioblastoma therapy.

ACS Appl Mater Interfaces. 2015-4-1

[10]
Solid lipid nanoparticles loaded with fluorescent-labelled Cyclosporine A: anti-inflammatory activity in vitro.

Protein Pept Lett. 2014

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索