Suppr超能文献

双向河流系统最佳水质监测网络设计。

Optimum Water Quality Monitoring Network Design for Bidirectional River Systems.

机构信息

Department of Computer Science and Software Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.

Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK.

出版信息

Int J Environ Res Public Health. 2018 Jan 24;15(2):195. doi: 10.3390/ijerph15020195.

Abstract

Affected by regular tides, bidirectional water flows play a crucial role in surface river systems. Using optimization theory to design a water quality monitoring network can reduce the redundant monitoring nodes as well as save the costs for building and running a monitoring network. A novel algorithm is proposed to design an optimum water quality monitoring network for tidal rivers with bidirectional water flows. Two optimization objectives of minimum pollution detection time and maximum pollution detection probability are used in our optimization algorithm. We modify the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm and develop new fitness functions to calculate pollution detection time and pollution detection probability in a discrete manner. In addition, the Storm Water Management Model (SWMM) is used to simulate hydraulic characteristics and pollution events based on a hypothetical river system studied in the literature. Experimental results show that our algorithm can obtain a better Pareto frontier. The influence of bidirectional water flows to the network design is also identified, which has not been studied in the literature. Besides that, we also find that the probability of bidirectional water flows has no effect on the optimum monitoring network design but slightly changes the mean pollution detection time.

摘要

受规则潮汐的影响,双向水流在地表河流系统中起着至关重要的作用。利用优化理论设计水质监测网络,可以减少冗余的监测节点,同时节省建设和运行监测网络的成本。本文提出了一种新的算法,用于设计具有双向水流的潮汐河的最优水质监测网络。我们的优化算法使用了两个优化目标,即最小污染检测时间和最大污染检测概率。我们修改了多目标粒子群优化(MOPSO)算法,并开发了新的适应度函数,以离散方式计算污染检测时间和污染检测概率。此外,我们还使用 Storm Water Management Model(SWMM)根据文献中研究的假设河流系统模拟水力特征和污染事件。实验结果表明,我们的算法可以获得更好的 Pareto 前沿。此外,我们还确定了双向水流对网络设计的影响,这在文献中尚未研究过。此外,我们还发现双向水流的概率对最优监测网络设计没有影响,但会略微改变平均污染检测时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/857e/5858265/4f0207f8ebaa/ijerph-15-00195-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验