Suppr超能文献

AMP激活的蛋白激酶同源物Snf1协调紫杉醇产生菌小孢拟盘多毛孢中的碳利用、分生孢子产生及次生代谢产物的生物合成。

The AMP-Activated Protein Kinase Homolog Snf1 Concerts Carbon Utilization, Conidia Production and the Biosynthesis of Secondary Metabolites in the Taxol-Producer Pestalotiopsis microspora.

作者信息

Wang Dan, Li Yingying, Wang Haichuan, Wei Dongsheng, Akhberdi Oren, Liu Yanjie, Xiang Biyun, Hao Xiaoran, Zhu Xudong

机构信息

National Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University (DMNU), Tianjin 300071, China.

Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.

出版信息

Genes (Basel). 2018 Jan 24;9(2):59. doi: 10.3390/genes9020059.

Abstract

Highly conserved, the Snf1/AMPK is a central regulator of carbon metabolism and energy production in the eukaryotes. However, its function in filamentous fungi has not been well established. In this study, we reported functional characterization of Snf1/AMPK in the growth, development and secondary metabolism in the filamentous fungus . By deletion of the yeast homolog, we found that it regulated the utilization of carbon sources, e.g., sucrose, demonstrating a conserved function of this kinase in filamentous fungus. Importantly, several novel functions of were unraveled. For instance, the deletion strain displayed remarkable retardation in vegetative growth and pigmentation and produced a diminished number of conidia, even in the presence of the primary carbon source glucose. Deletion of the gene caused damages in the cell wall as shown by its hypersensitivities to Calcofluor white and Congo red, suggesting a critical role of Snf1 in maintaining cell wall integrity. Furthermore, the mutant strain Δ was hypersensitive to stress, e.g., osmotic pressure (1 M sorbitol), drug G418 and heat shock, though the mechanism remains to be illustrated. Significantly, disruption of the gene altered the production of secondary metabolites. By high-performance liquid chromatography (HPLC) profiling, we found that Δ barely produced secondary metabolites, e.g., the known product pestalotiollide B. This study suggests that Snf1 is a key regulator in filamentous fungus concerting carbon metabolism and the filamentous growth, conidiation, cell wall integrity, stress tolerance and the biosynthesis of secondary metabolites.

摘要

Snf1/AMPK高度保守,是真核生物中碳代谢和能量产生的核心调节因子。然而,其在丝状真菌中的功能尚未完全明确。在本研究中,我们报道了Snf1/AMPK在丝状真菌生长、发育和次级代谢中的功能特征。通过缺失其酵母同源物,我们发现它调节碳源(如蔗糖)的利用,证明了该激酶在丝状真菌中的保守功能。重要的是,还揭示了它的几个新功能。例如,缺失菌株在营养生长和色素沉着方面表现出显著延迟,分生孢子数量减少,即使在存在主要碳源葡萄糖的情况下也是如此。该基因的缺失导致细胞壁受损,表现为对荧光增白剂和刚果红高度敏感,表明Snf1在维持细胞壁完整性方面起关键作用。此外,突变菌株Δ对压力(如渗透压(1 M山梨醇)、药物G418和热休克)高度敏感,尽管其机制尚待阐明。值得注意的是,该基因的破坏改变了次级代谢产物的产生。通过高效液相色谱(HPLC)分析,我们发现Δ几乎不产生次级代谢产物,如已知产物pestalotiollide B。本研究表明,Snf1是丝状真菌中协调碳代谢与丝状生长、分生孢子形成、细胞壁完整性、胁迫耐受性和次级代谢产物生物合成的关键调节因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5358/5852555/32c167342609/genes-09-00059-g001a.jpg

相似文献

2
10
Involvement of in Fungal Development, Sterigmatocystin Biosynthesis, and Lignocellulosic Degradation in the Filamentous Fungus .
Front Microbiol. 2020 Jun 10;11:1038. doi: 10.3389/fmicb.2020.01038. eCollection 2020.

引用本文的文献

2
Effect of Different Carbons on Lipid Production and SNF1 Transcription in .
Indian J Microbiol. 2023 Mar;63(1):146-151. doi: 10.1007/s12088-023-01070-z. Epub 2023 Mar 2.
3
Lipid Accumulation by Snf-β Engineered Mucor circinelloides Strains on Glucose and Xylose.
Appl Biochem Biotechnol. 2023 Dec;195(12):7697-7707. doi: 10.1007/s12010-023-04531-9. Epub 2023 Apr 22.
4
Diversity: Species, Dispositions, Secondary Metabolites, and Bioactivities.
Molecules. 2022 Nov 21;27(22):8088. doi: 10.3390/molecules27228088.
6
Snf1 Kinase Differentially Regulates Pathogenicity according to the Plant Host.
Microorganisms. 2022 Feb 15;10(2):444. doi: 10.3390/microorganisms10020444.
7
Genome-Wide Analysis of Nutrient Signaling Pathways Conserved in Arbuscular Mycorrhizal Fungi.
Microorganisms. 2021 Jul 22;9(8):1557. doi: 10.3390/microorganisms9081557.
8
Involvement of in Fungal Development, Sterigmatocystin Biosynthesis, and Lignocellulosic Degradation in the Filamentous Fungus .
Front Microbiol. 2020 Jun 10;11:1038. doi: 10.3389/fmicb.2020.01038. eCollection 2020.

本文引用的文献

1
2
Improved pestalotiollide B production by deleting competing polyketide synthase genes in Pestalotiopsis microspora.
J Ind Microbiol Biotechnol. 2017 Feb;44(2):237-246. doi: 10.1007/s10295-016-1882-z. Epub 2016 Dec 22.
4
PdSNF1, a sucrose non-fermenting protein kinase gene, is required for Penicillium digitatum conidiation and virulence.
Appl Microbiol Biotechnol. 2013 Jun;97(12):5433-45. doi: 10.1007/s00253-012-4593-z. Epub 2013 Jan 8.
5
Genetic control of asexual sporulation in filamentous fungi.
Curr Opin Microbiol. 2012 Dec;15(6):669-77. doi: 10.1016/j.mib.2012.09.006. Epub 2012 Oct 22.
6
The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation.
FEBS J. 2011 Nov;278(21):3978-90. doi: 10.1111/j.1742-4658.2011.08315.x. Epub 2011 Sep 26.
7
Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins.
FEMS Microbiol Rev. 2012 Jan;36(1):1-24. doi: 10.1111/j.1574-6976.2011.00285.x. Epub 2011 Jul 13.
10
GzSNF1 is required for normal sexual and asexual development in the ascomycete Gibberella zeae.
Eukaryot Cell. 2009 Jan;8(1):116-27. doi: 10.1128/EC.00176-08. Epub 2008 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验