From Pflanzenphysiologie, Universität Kaiserslautern, Erwin Schrödinger-Strasse, D-67653 Kaiserslautern, Germany.
the Institut für Pflanzenbiologie, Universität Zürich, CH-8008 Zürich, Switzerland.
J Biol Chem. 2018 Mar 16;293(11):4180-4190. doi: 10.1074/jbc.RA117.000851. Epub 2018 Jan 24.
The exact transport characteristics of the vacuolar dicarboxylate transporter tDT from are elusive. To overcome this limitation, we combined a range of experimental approaches comprising generation/analysis of overexpressors, CO feeding and quantification of C enrichment, functional characterization of tDT in proteoliposomes, and electrophysiological studies on vacuoles. knockout plants showed decreased malate and increased citrate concentrations in leaves during the diurnal light-dark rhythm and after onset of drought, when compared with wildtypes. Interestingly, under the latter two conditions, overexpressors exhibited malate and citrate levels opposite to knockout plants. Highly purified tDT protein transports malate and citrate in a 1:1 antiport mode. The apparent affinity for malate decreased with decreasing pH, whereas citrate affinity increased. This observation indicates that tDT exhibits a preference for dianion substrates, which is supported by electrophysiological analysis on intact vacuoles. tDT also accepts fumarate and succinate as substrates, but not α-ketoglutarate, gluconate, sulfate, or phosphate. Taking tDT as an example, we demonstrated that it is possible to reconstitute a vacuolar metabolite transporter functionally in proteoliposomes. The displayed, so far unknown counterexchange properties of tDT now explain the frequently observed reciprocal concentration changes of malate and citrate in leaves from various plant species. tDT from is the first member of the well-known and widely present SLC13 group of carrier proteins, exhibiting an antiport mode of transport.
vacuolar 二羧酸转运蛋白 tDT 的精确转运特性尚不清楚。为了克服这一限制,我们结合了一系列实验方法,包括生成/分析过表达体、CO 喂养和 C 富集的定量、在质体中对 tDT 的功能特征分析以及在液泡上的电生理研究。与野生型相比, 敲除植物在白天的光-暗节律和干旱开始后,叶片中的苹果酸和柠檬酸浓度降低。有趣的是,在后两种情况下, 过表达体表现出与 敲除植物相反的苹果酸和柠檬酸水平。高度纯化的 tDT 蛋白以 1:1 的反向转运模式运输苹果酸和柠檬酸。苹果酸的表观亲和力随 pH 值降低而降低,而柠檬酸的亲和力增加。这一观察结果表明 tDT 对二阴离子底物表现出偏好,这得到了对完整液泡的电生理分析的支持。tDT 还接受富马酸和琥珀酸作为底物,但不接受α-酮戊二酸、葡萄糖酸、硫酸盐或磷酸盐。以 tDT 为例,我们证明了在质体中重建功能上的液泡代谢物转运体是可能的。tDT 迄今为止未知的反向交换特性现在可以解释各种植物叶片中苹果酸和柠檬酸经常观察到的相互浓度变化。 中的 tDT 是众所周知且广泛存在的 SLC13 组载体蛋白的第一个成员,表现出反向转运模式。