Suppr超能文献

细胞外囊泡出芽受到 TAT-5 翻转酶定位和磷脂不对称性冗余调节因子的抑制。

Extracellular vesicle budding is inhibited by redundant regulators of TAT-5 flippase localization and phospholipid asymmetry.

机构信息

Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany.

Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016.

出版信息

Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):E1127-E1136. doi: 10.1073/pnas.1714085115. Epub 2018 Jan 24.

Abstract

Cells release extracellular vesicles (EVs) that mediate intercellular communication and repair damaged membranes. Despite the pleiotropic functions of EVs in vitro, their in vivo function is debated, largely because it is unclear how to induce or inhibit their formation. In particular, the mechanisms of EV release by plasma membrane budding or ectocytosis are poorly understood. We previously showed that TAT-5 phospholipid flippase activity maintains the asymmetric localization of the lipid phosphatidylethanolamine (PE) in the plasma membrane and inhibits EV budding by ectocytosis in However, no proteins that inhibit ectocytosis upstream of TAT-5 were known. Here, we identify TAT-5 regulators associated with retrograde endosomal recycling: PI3Kinase VPS-34, Beclin1 homolog BEC-1, DnaJ protein RME-8, and the uncharacterized Dopey homolog PAD-1. PI3Kinase, RME-8, and semiredundant sorting nexins are required for the plasma membrane localization of TAT-5, which is important to maintain PE asymmetry and inhibit EV release. PAD-1 does not directly regulate TAT-5 localization, but is required for the lipid flipping activity of TAT-5. PAD-1 also has roles in endosomal trafficking with the GEF-like protein MON-2, which regulates PE asymmetry and EV release redundantly with sorting nexins independent of the core retromer. Thus, in addition to uncovering redundant intracellular trafficking pathways, our study identifies additional proteins that regulate EV release. This work pinpoints TAT-5 and PE as key regulators of plasma membrane budding, further supporting the model that PE externalization drives ectocytosis.

摘要

细胞释放细胞外囊泡 (EVs),介导细胞间通讯和修复受损的膜。尽管 EVs 在体外具有多种功能,但它们在体内的功能仍存在争议,主要是因为尚不清楚如何诱导或抑制其形成。特别是,质膜出芽或胞吐作用释放 EV 的机制还了解甚少。我们之前表明,TAT-5 磷脂翻转酶活性维持了质膜中脂质磷脂酰乙醇胺 (PE) 的不对称定位,并通过胞吐作用抑制了 EV 的出芽,然而,在 TAT-5 之前没有已知的抑制胞吐作用的蛋白质。在这里,我们确定了与逆行内体回收相关的 TAT-5 调节剂:PI3 激酶 VPS-34、Beclin1 同源物 BEC-1、DnaJ 蛋白 RME-8 和未表征的 Dopey 同源物 PAD-1。PI3 激酶、RME-8 和半冗余分选连接蛋白对于 TAT-5 在质膜上的定位是必需的,这对于维持 PE 不对称性和抑制 EV 释放很重要。PAD-1 不直接调节 TAT-5 的定位,但对于 TAT-5 的脂质翻转活性是必需的。PAD-1 还与 GEF 样蛋白 MON-2 一起在内体运输中发挥作用,它与分选连接蛋白一起独立于核心逆行体调节 PE 不对称性和 EV 释放,这与核心逆行体无关。因此,除了揭示冗余的细胞内运输途径外,我们的研究还确定了其他调节 EV 释放的蛋白质。这项工作指出 TAT-5 和 PE 是质膜出芽的关键调节剂,进一步支持了 PE 外化驱动胞吐作用的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d760/5819400/2c742b686be4/pnas.1714085115fig01.jpg

相似文献

1
Extracellular vesicle budding is inhibited by redundant regulators of TAT-5 flippase localization and phospholipid asymmetry.
Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):E1127-E1136. doi: 10.1073/pnas.1714085115. Epub 2018 Jan 24.
2
The P4-ATPase TAT-5 inhibits the budding of extracellular vesicles in C. elegans embryos.
Curr Biol. 2011 Dec 6;21(23):1951-9. doi: 10.1016/j.cub.2011.10.040. Epub 2011 Nov 17.
3
Mechanisms and functions of extracellular vesicle release in vivo-What we can learn from flies and worms.
Cell Adh Migr. 2017 Mar 4;11(2):135-150. doi: 10.1080/19336918.2016.1236899. Epub 2016 Sep 30.
4
The P4-ATPase ATP9A is a novel determinant of exosome release.
PLoS One. 2019 Apr 4;14(4):e0213069. doi: 10.1371/journal.pone.0213069. eCollection 2019.
5
The C. elegans P4-ATPase TAT-1 regulates lysosome biogenesis and endocytosis.
Traffic. 2009 Jan;10(1):88-100. doi: 10.1111/j.1600-0854.2008.00844.x. Epub 2008 Oct 14.
6
The ATPase activity of the phosphatidylethanolamine flippase TAT-5 inhibits extracellular vesicle budding from the plasma membrane.
MicroPubl Biol. 2023 Mar 24;2023. doi: 10.17912/micropub.biology.000779. eCollection 2023.
8
The Essential Neo1 Protein from Budding Yeast Plays a Role in Establishing Aminophospholipid Asymmetry of the Plasma Membrane.
J Biol Chem. 2016 Jul 22;291(30):15727-39. doi: 10.1074/jbc.M115.686253. Epub 2016 May 26.
9
Caenorhabditis elegans numb inhibits endocytic recycling by binding TAT-1 aminophospholipid translocase.
Traffic. 2011 Dec;12(12):1839-49. doi: 10.1111/j.1600-0854.2011.01271.x. Epub 2011 Sep 14.
10
Inactivation of Caenorhabditis elegans aminopeptidase DNPP-1 restores endocytic sorting and recycling in tat-1 mutants.
Mol Biol Cell. 2013 Apr;24(8):1163-75. doi: 10.1091/mbc.E12-10-0730. Epub 2013 Feb 20.

引用本文的文献

1
P4-ATPases control phosphoinositide membrane asymmetry and neomycin resistance.
Nat Cell Biol. 2025 Jul 11. doi: 10.1038/s41556-025-01692-z.
3
4
Loss of lipid asymmetry facilitates plasma membrane blebbing by decreasing membrane lipid packing.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2417145122. doi: 10.1073/pnas.2417145122. Epub 2025 May 5.
5
P4-ATPase control over phosphoinositide membrane asymmetry and neomycin resistance.
bioRxiv. 2025 Mar 3:2025.03.03.641220. doi: 10.1101/2025.03.03.641220.
6
ATP8A1-translocated endosomal phosphatidylserine fine-tunes the multivesicular body formation and the endo-lysosomal traffic.
iScience. 2025 Feb 11;28(3):111973. doi: 10.1016/j.isci.2025.111973. eCollection 2025 Mar 21.
7
Dopey-dependent regulation of extracellular vesicles maintains neuronal morphology.
Curr Biol. 2024 Nov 4;34(21):4920-4933.e11. doi: 10.1016/j.cub.2024.09.018. Epub 2024 Oct 7.
8
Phagolysosomes break down the membrane of a non-apoptotic corpse independent of macroautophagy.
bioRxiv. 2024 Jun 20:2024.06.19.599770. doi: 10.1101/2024.06.19.599770.
9
Extracellular vesicles.
Genetics. 2024 Aug 7;227(4). doi: 10.1093/genetics/iyae088.
10
Dopey-dependent regulation of extracellular vesicles maintains neuronal morphology.
bioRxiv. 2024 May 8:2024.05.07.591898. doi: 10.1101/2024.05.07.591898.

本文引用的文献

1
Sequence-dependent cargo recognition by SNX-BARs mediates retromer-independent transport of CI-MPR.
J Cell Biol. 2017 Nov 6;216(11):3695-3712. doi: 10.1083/jcb.201703015. Epub 2017 Sep 21.
2
Cargo-selective SNX-BAR proteins mediate retromer trimer independent retrograde transport.
J Cell Biol. 2017 Nov 6;216(11):3677-3693. doi: 10.1083/jcb.201702137. Epub 2017 Sep 21.
3
The dense-core vesicle maturation protein CCCP-1 binds RAB-2 and membranes through its C-terminal domain.
Traffic. 2017 Nov;18(11):720-732. doi: 10.1111/tra.12507. Epub 2017 Sep 13.
4
Retromer.
Curr Biol. 2017 Jul 24;27(14):R687-R689. doi: 10.1016/j.cub.2017.05.072.
5
Phosphatidylethanolamine dynamics are required for osteoclast fusion.
Sci Rep. 2017 Apr 24;7:46715. doi: 10.1038/srep46715.
6
Quantitative high-content imaging identifies novel regulators of Neo1 trafficking at endosomes.
Mol Biol Cell. 2017 Jun 1;28(11):1539-1550. doi: 10.1091/mbc.E16-11-0772. Epub 2017 Apr 12.
7
ESCRT-III Acts Downstream of MLKL to Regulate Necroptotic Cell Death and Its Consequences.
Cell. 2017 Apr 6;169(2):286-300.e16. doi: 10.1016/j.cell.2017.03.020.
8
Membrane remodeling during embryonic abscission in .
J Cell Biol. 2017 May 1;216(5):1277-1286. doi: 10.1083/jcb.201607030. Epub 2017 Mar 21.
9
Platelet microvesicles in health and disease.
Platelets. 2017 May;28(3):214-221. doi: 10.1080/09537104.2016.1265924. Epub 2017 Jan 19.
10
SNX-1 and RME-8 oppose the assembly of HGRS-1/ESCRT-0 degradative microdomains on endosomes.
Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):E307-E316. doi: 10.1073/pnas.1612730114. Epub 2017 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验