Suppr超能文献

P4-ATP酶控制磷酸肌醇膜不对称性和新霉素抗性。

P4-ATPases control phosphoinositide membrane asymmetry and neomycin resistance.

作者信息

Jain Bhawik K, Duan H Diessel, Valentine Christina, Samiha Ariana, Li Huilin, Graham Todd R

机构信息

Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.

Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.

出版信息

Nat Cell Biol. 2025 Jul 11. doi: 10.1038/s41556-025-01692-z.

Abstract

The aminoglycoside antibiotic neomycin has robust antibacterial properties, yet its clinical utility is curtailed by its nephrotoxicity and ototoxicity. The mechanism by which the polycationic neomycin enters specific eukaryotic cell types remains poorly understood. In budding yeast, NEO1 is required for neomycin resistance and encodes a phospholipid flippase that establishes membrane asymmetry. Here we show that mutations altering Neo1 substrate recognition cause neomycin hypersensitivity by exposing phosphatidylinositol-4-phosphate (PI4P) in the plasma membrane extracellular leaflet. Cryogenic electron microscopy reveals PI4P binding to Neo1 within the substrate translocation pathway. PI4P enters the lumen of the endoplasmic reticulum and is flipped by Neo1 at the Golgi to prevent PI4P secretion to the cell surface. Deficiency of the orthologous ATP9A in human cells also causes exposure of PI4P and neomycin sensitivity. These findings unveil conserved mechanisms of aminoglycoside sensitivity and phosphoinositide homoeostasis, with important implications for signalling by extracellular phosphoinositides.

摘要

氨基糖苷类抗生素新霉素具有强大的抗菌特性,但其临床应用因肾毒性和耳毒性而受到限制。多阳离子新霉素进入特定真核细胞类型的机制仍知之甚少。在芽殖酵母中,NEO1是新霉素抗性所必需的,它编码一种建立膜不对称性的磷脂翻转酶。在这里,我们表明,改变Neo1底物识别的突变通过暴露质膜细胞外小叶中的磷脂酰肌醇-4-磷酸(PI4P)导致新霉素超敏反应。低温电子显微镜揭示了PI4P在底物转运途径中与Neo1结合。PI4P进入内质网腔,并在高尔基体被Neo1翻转,以防止PI4P分泌到细胞表面。人类细胞中直系同源物ATP9A的缺乏也会导致PI4P暴露和新霉素敏感性。这些发现揭示了氨基糖苷类敏感性和磷酸肌醇稳态的保守机制,对细胞外磷酸肌醇信号传导具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验