Suppr超能文献

对自杀和情感概念的神经表征进行机器学习可识别出自杀倾向的青少年。

Machine learning of neural representations of suicide and emotion concepts identifies suicidal youth.

作者信息

Just Marcel Adam, Pan Lisa, Cherkassky Vladimir L, McMakin Dana L, Cha Christine, Nock Matthew K, Brent David

机构信息

Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA.

Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

出版信息

Nat Hum Behav. 2017;1:911-919. doi: 10.1038/s41562-017-0234-y. Epub 2017 Oct 30.

Abstract

The clinical assessment of suicidal risk would be significantly complemented by a biologically-based measure that assesses alterations in the neural representations of concepts related to death and life in people who engage in suicidal ideation. This study used machine-learning algorithms (Gaussian Naïve Bayes) to identify such individuals (17 suicidal ideators vs 17 controls) with high (91%) accuracy, based on their altered fMRI neural signatures of death and life-related concepts. The most discriminating concepts were and . A similar classification accurately (94%) discriminated 9 suicidal ideators who had made a suicide attempt from 8 who had not. Moreover, a major facet of the concept alterations was the evoked emotion, whose neural signature served as an alternative basis for accurate (85%) group classification. The study establishes a biological, neurocognitive basis for altered concept representations in participants with suicidal ideation, which enables highly accurate group membership classification.

摘要

对自杀风险的临床评估将通过一种基于生物学的测量方法得到显著补充,该方法可评估有自杀意念者中与死亡和生命相关概念的神经表征变化。本研究使用机器学习算法(高斯朴素贝叶斯),根据与死亡和生命相关概念的功能磁共振成像(fMRI)神经特征变化,以91%的高准确率识别出此类个体(17名有自杀意念者与17名对照者)。最具区分性的概念是 和 。类似的分类以94%的准确率区分了9名自杀未遂的有自杀意念者和8名未自杀未遂的有自杀意念者。此外,概念变化的一个主要方面是诱发情绪,其神经特征可作为准确(85%)分组分类的另一个依据。该研究为有自杀意念参与者的概念表征改变建立了生物学、神经认知基础,从而能够进行高度准确的组成员分类。

相似文献

1
Machine learning of neural representations of suicide and emotion concepts identifies suicidal youth.
Nat Hum Behav. 2017;1:911-919. doi: 10.1038/s41562-017-0234-y. Epub 2017 Oct 30.
2
Machine learning prediction of suicidal ideation, planning, and attempt among Korean adults: A population-based study.
SSM Popul Health. 2022 Sep 14;19:101231. doi: 10.1016/j.ssmph.2022.101231. eCollection 2022 Sep.
4
Neurocognitive vulnerability to youth suicidal behavior.
J Psychiatr Res. 2020 Dec;131:119-126. doi: 10.1016/j.jpsychires.2020.08.032. Epub 2020 Sep 2.
8
Testing mood-activated psychological markers for suicidal ideation.
J Abnorm Psychol. 2018 Jul;127(5):448-457. doi: 10.1037/abn0000358. Epub 2018 Jun 21.

引用本文的文献

2
Inferring Mental States from Brain Data: Ethico-legal Questions about Social Uses of Brain Data.
Hastings Cent Rep. 2025 Jan;55(1):22-32. doi: 10.1002/hast.4958.
5
Abnormal attentional bias in individuals with suicidal ideation during an emotional Stroop task: an event-related potential study.
Front Psychiatry. 2023 Aug 22;14:1118602. doi: 10.3389/fpsyt.2023.1118602. eCollection 2023.
6
Modeling Suicidality with Multimodal Impulsivity Characterization in Participants with Mental Health Disorder.
Behav Neurol. 2023 Aug 5;2023:8552180. doi: 10.1155/2023/8552180. eCollection 2023.
7
Neuroimaging alterations of the suicidal brain and its relevance to practice: an updated review of MRI studies.
Front Psychiatry. 2023 Apr 27;14:1083244. doi: 10.3389/fpsyt.2023.1083244. eCollection 2023.
9
Overfitting to 'predict' suicidal ideation.
Nat Hum Behav. 2023 May;7(5):680-681. doi: 10.1038/s41562-023-01560-6. Epub 2023 Apr 6.
10
Prediction of suicidality in bipolar disorder using variability of intrinsic brain activity and machine learning.
Hum Brain Mapp. 2023 May;44(7):2767-2777. doi: 10.1002/hbm.26243. Epub 2023 Feb 27.

本文引用的文献

1
Negative emotions in veterans relate to suicide risk through feelings of perceived burdensomeness and thwarted belongingness.
J Affect Disord. 2017 Jan 15;208:15-21. doi: 10.1016/j.jad.2016.09.038. Epub 2016 Sep 28.
2
Do reasons for living protect against suicidal thoughts and behaviors? A systematic review of the literature.
J Psychiatr Res. 2016 Jun;77:92-108. doi: 10.1016/j.jpsychires.2016.02.019. Epub 2016 Mar 2.
3
A Mixed Methods Approach to Identify Cognitive Warning Signs for Suicide Attempts.
Arch Suicide Res. 2016 Oct-Dec;20(4):528-38. doi: 10.1080/13811118.2015.1136717. Epub 2016 Jan 13.
4
Processing of decision-making and social threat in patients with history of suicidal attempt: A neuroimaging replication study.
Psychiatry Res. 2015 Dec 30;234(3):369-77. doi: 10.1016/j.pscychresns.2015.09.020. Epub 2015 Oct 16.
6
Familial pathways to early-onset suicide attempt: a 5.6-year prospective study.
JAMA Psychiatry. 2015 Feb;72(2):160-8. doi: 10.1001/jamapsychiatry.2014.2141.
7
Identifying autism from neural representations of social interactions: neurocognitive markers of autism.
PLoS One. 2014 Dec 2;9(12):e113879. doi: 10.1371/journal.pone.0113879. eCollection 2014.
9
Cognitive Distortions and Suicide Attempts.
Cognit Ther Res. 2014 Aug 1;38(4):369-374. doi: 10.1007/s10608-014-9613-0.
10
Improving the short-term prediction of suicidal behavior.
Am J Prev Med. 2014 Sep;47(3 Suppl 2):S176-80. doi: 10.1016/j.amepre.2014.06.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验