Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Room 205 B, Building 3, 182 Tian Mu Shan Road, Hangzhou, Zhejiang 310013, China.
Mol Hum Reprod. 2018 Mar 1;24(3):143-157. doi: 10.1093/molehr/gay003.
Are extracellular vesicles (EVs) in the murine oviduct (oviductosomes, OVS) conserved in humans and do they play a role in the fertility of Pmca4-/- females?
OVS and their fertility-modulating proteins are conserved in humans, arise via the apocrine pathway, and mediate a compensatory upregulation of PMCA1 (plasma membrane Ca2+-ATPase 1) in Pmca4-/- female mice during proestrus/estrus, to account for their fertility.
Recently murine OVS were identified and shown during proestrus/estrus to express elevated levels of PMCA4 which they can deliver to sperm. PMCA4 is the major Ca2+ efflux pump in murine sperm and Pmca4 deletion leads to loss of sperm motility and male infertility as there is no compensatory upregulation of the remaining Ca2+ pump, PMCA1. Of the four family members of PMCAs (PMCA1-4), PMCA1 and PMCA4 are ubiquitous, and to date there have been no reports of one isoform being upregulated to compensate for another in any organ/tissue. Since Pmca4-/- females are fertile, despite the abundant expression of PMCA4 in wild-type (WT) OVS, we propose that OVS serve a role of packaging and delivering to sperm elevated levels of PMCA1 in Pmca4-/- during proestrus/estrus to compensate for PMCA4's absence.
STUDY DESIGN, SIZE, DURATION: Fallopian tubes from pre-menopausal women undergoing hysterectomy were used to study EVs in the luminal fluid. Oviducts from sexually mature WT mice were sectioned after perfusion fixation to detect EVs in situ. Oviducts were recovered from WT and Pmca4-/- after hormonally induced estrus and sectioned for PMCA1 immunofluorescence (IF) (detected with confocal microscopy) and hematoxylin and eosin staining. Reproductive tissues, luminal fluids and EVs were recovered after induced estrus and after natural cycling for western blot analysis of PMCA1 and qRT-PCR of Pmca1 to compare expression levels in WT and Pmca4-/-. OVS, uterosomes, and epididymal luminal fluid were included in the comparisons. WT and Pmca4-/- OVS were analyzed for the presence of known PMCA4 partners in sperm and their ability to interact with PMCA1, via co-immunoprecipitation. In vitro uptake of PMCA1 from OVS was analyzed in capacitated and uncapacitated sperm via quantitative western blot analysis, IF localization and flow cytometry. Caudal sperm were also assayed for uptake of tyrosine-phosphorylated proteins which were shown to be present in OVS. Finally, PMCA1 and PMCA4 in OVS and that delivered to sperm were assayed for enzymatic activity.
PARTICIPANTS/MATERIALS, SETTING, METHODS: Human fallopian tubes were flushed to recover luminal fluid which was processed for OVS via ultracentrifugation. Human OVS were negatively stained for transmission electron microscopy (TEM) and subjected to immunogold labeling, to detect PMCA4. Western analysis was used to detect HSC70 (an EV biomarker), PMCA1 and endothelial nitric oxide synthase (eNOS) which is a fertility-modulating protein delivered to human sperm by prostasomes. Oviducts of sexually mature female mice were sectioned after perfusion fixation for TEM tomography to obtain 3D information and to distinguish cross-sections of EVs from those of microvilli and cilia. Murine tissues, luminal fluids and EVs were assayed for PMCA1 (IF and western blot) or qRT-PCR. PMCA1 levels from western blots were quantified, using band densities and compared in WT and Pmca4-/- after induced estrus and in proestrus/estrus and metestrus/diestrus in cycling females. In vitro uptake of PMCA1 and tyrosine-phosphorylated proteins was quantified with flow cytometry and/or quantitative western blot. Ca2+-ATPase activity in OVS and sperm before and after PMCA1 and PMCA4 uptake was assayed, via the enzymatic hydrolysis rate of ATP.
TEM revealed that human oviducts contain EVs (exosomal and microvesicular). These EVs contain PMCA4 (immunolabeling), eNOS and PMCA1 (western blot) in their cargo. TEM tomography showed the murine oviduct with EV-containing blebs which typify the apocrine pathway for EV biogenesis. Western blots revealed that during proestrus/estrus PMCA1 was significantly elevated in the oviductal luminal fluid (OLF) (P = 0.02) and in OVS (P = 0.03) of Pmca4-/-, compared to WT. Further, while PMCA1 levels did not fluctuate in OLF during the cycle in WT, they were significantly (P = 0.02) higher in proestrus/estrus than at metestrus/diestrus in Pmca4-/-. The elevated levels of PMCA1 in proestrus/estrus, which mimics PMCA4 in WT, is OLF/OVS-specific, and is not seen in oviductal tissues, uterosomes or epididymal luminal fluid of Pmca4-/-. However, qRT-PCR revealed significantly elevated levels of Pmca1 transcript in Pmca4-/- oviductal tissues, compared to WT. PMCA1 could be transferred from OVS to sperm and the levels were significantly higher for capacitated vs uncapacitated sperm, as assessed by flow cytometry (P = 0.001) after 3 h co-incubation, quantitative western blot (P < 0.05) and the frequency of immuno-labeled sperm (P < 0.001) after 30 min co-incubation. Tyrosine phosphorylated proteins were discovered in murine OVS and could be delivered to sperm after their co-incubation with OVS, as detected by western, immunofluorescence localization, and flow cytometry. PMCA1 and PMCA4 in OVS were shown to be enzymatically active and this activity increased in sperm after OVS interaction.
None.
Although oviductal tissues of WT and Pmca4-/- showed no significant difference in PMCA1 levels, Pmca4-/- levels of OVS/OLF during proestrus/estrus were significantly higher than in WT. We have attributed this enrichment or upregulation of PMCA1 in Pmca4-/- partly to selective packaging in OVS to compensate for the lack of PMCA4. However, in the absence of a difference between WT and Pmca4-/- in the PMCA1 levels in oviductal tissues as a whole, we cannot rule out significantly higher PMCA1 expression in the oviductal epithelium that gives rise to the OVS as significantly higher Pmca1 transcripts were detected in Pmca4-/-.
Since OVS and fertility-modulating cargo components are conserved in humans, it suggests that murine OVS role in regulating the expression of proteins required for capacitation and fertility is also conserved. Secondly, OVS may explain some of the differences in in vivo and in vitro fertilization for mouse mutants, as seen in mice lacking the gene for FER which is the enzyme required for sperm protein tyrosine phosphorylation. Our observation that murine OVS carry and can modulate sperm protein tyrosine phosphorylation by delivering them to sperm provides an explanation for the in vivo fertility of Fer mutants, not seen in vitro. Finally, our findings have implications for infertility treatment and exosome therapeutics.
STUDY FUNDING AND COMPETING INTEREST(S): The work was supported by National Institute of Health (RO3HD073523 and 5P20RR015588) grants to P.A.M.-D. There are no conflicts of interests.
在人类中,输卵管(卵管小体,OVS)中的细胞外囊泡(EVs)是否保守,它们是否在 Pmca4-/- 雌性的生育能力中发挥作用?
OVS 及其调节生育的蛋白在人类中保守,通过顶浆分泌途径产生,并在动情前期/发情期介导 PMCA1(质膜 Ca2+-ATP 酶 1)的代偿性上调,以解释它们的生育能力。
最近鉴定出了鼠类 OVS,发现在动情前期/发情期表达高水平的 PMCA4,它们可以将其递送到精子中。PMCA4 是鼠类精子中主要的 Ca2+外排泵,Pmca4 缺失会导致精子运动能力丧失和雄性不育,因为不存在剩余 Ca2+泵 PMCA1 的代偿性上调。在 PMCAs(PMCA1-4)的四个家族成员中,PMCA1 和 PMCA4 是普遍存在的,迄今为止,尚未有报道称在任何器官/组织中,一种同工酶的上调会代偿另一种同工酶的缺失。由于 Pmca4-/- 雌性尽管在 WT OVS 中大量表达 PMCA4,但仍具有生育能力,我们提出在动情前期/发情期,OVS 发挥了将高水平的 PMCA1 包装并递送到 Pmca4-/- 精子中的作用,以补偿 PMCA4 的缺失。
研究设计、规模、持续时间:从接受子宫切除术的绝经前妇女身上采集输卵管的管腔液来研究腔内液中的 EVs。在灌注固定后,对性成熟 WT 小鼠的输卵管进行切片,以检测原位 EVs。在激素诱导发情后,从 WT 和 Pmca4-/- 中回收输卵管,进行 PMCA1 免疫荧光(IF)(通过共聚焦显微镜检测)和苏木精和伊红染色。在诱导发情后和自然周期后,从生殖组织、管腔液和 EVs 中回收,用于 Western blot 分析 PMCA1 和 qRT-PCR 分析 Pmca1,以比较 WT 和 Pmca4-/- 中的表达水平。OVS、utosomes 和附睾管腔液均包括在比较中。分析 WT 和 Pmca4-/-OVS 中已知的 PMCA4 伴侣在精子中的存在情况及其与 PMCA1 相互作用的能力,通过共免疫沉淀。通过定量 Western blot 分析、IF 定位和流式细胞术分析体外从 OVS 摄取 PMCA1 的能力,在有/无顶体反应的精子中进行。还检测了尾部精子摄取存在于 OVS 中的酪氨酸磷酸化蛋白。最后,分析 OVS 和递送到精子中的 PMCA1 和 PMCA4 的酶活性。
参与者/材料、设置、方法:从冲洗人输卵管中回收管腔液,通过超速离心处理 EVs。对人 OVS 进行透射电子显微镜(TEM)负染色和免疫金标记,以检测 PMCA4。Western blot 用于检测 EV 生物标志物 HSC70、PMCA1 和内皮型一氧化氮合酶(eNOS),后者被 prostasomes 递送到人类精子中。在灌注固定后,对性成熟雌性小鼠的输卵管进行切片,用于 TEM 断层扫描,以获得 3D 信息,并区分 EV 与微绒毛和纤毛的横截面。分析小鼠组织、管腔液和 EVs 的 PMCA1(IF 和 Western blot)或 qRT-PCR。使用带密度定量 Western blot 分析中的 PMCA1 水平,并在诱导发情和发情期/发情期和动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/动情前期/