Department of Community Health Sciences and O'Brien Institute for Public Health, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.
Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.
Syst Rev. 2018 Jan 25;7(1):19. doi: 10.1186/s13643-017-0668-3.
The pragmatic-explanatory continuum indicator summary version 2 (PRECIS-2) tool has recently been developed to classify randomized clinical trials (RCTs) as pragmatic or explanatory based on their design characteristics. Given that treatment effects in explanatory trials may be greater than those obtained in pragmatic trials, conventional meta-analytic approaches may not accurately account for the heterogeneity among the studies and may result in biased treatment effect estimates. This study investigates if the incorporation of PRECIS-2 classification of published trials can improve the estimation of overall intervention effects in meta-analysis.
Using data from 31 published trials of intervention aimed at reducing obesity in children, we evaluated the utility of incorporating PRECIS-2 ratings of published trials into meta-analysis of intervention effects in clinical trials. Specifically, we compared random-effects meta-analysis, stratified meta-analysis, random-effects meta-regression, and mixture random-effects meta-regression methods for estimating overall pooled intervention effects.
Our analyses revealed that mixture meta-regression models that incorporate PRECIS-2 classification as covariate resulted in a larger pooled effect size (ES) estimate (ES = - 1.01, 95%CI = [- 1.52, - 0.43]) than conventional random-effects meta-analysis (ES = - 0.15, 95%CI = [- 0.23, - 0.08]).
In addition to the original intent of PRECIS-2 tool of aiding researchers in their choice of trial design, PRECIS-2 tool is useful for explaining between study variations in systematic review and meta-analysis of published trials. We recommend that researchers adopt mixture meta-regression methods when synthesizing evidence from explanatory and pragmatic trials.
实用-解释连续体指标总结版本 2(PRECIS-2)工具最近被开发出来,用于根据设计特点将随机临床试验(RCT)分类为实用或解释性。由于解释性试验中的治疗效果可能大于实用试验中的效果,因此传统的荟萃分析方法可能无法准确解释研究之间的异质性,并可能导致治疗效果估计存在偏差。本研究旨在探讨在荟萃分析中纳入已发表试验的 PRECIS-2 分类是否可以改善对总体干预效果的估计。
我们使用了 31 项针对儿童肥胖干预的已发表试验的数据,评估了将 PRECIS-2 分类纳入临床试验干预效果荟萃分析中的效用。具体来说,我们比较了随机效应荟萃分析、分层荟萃分析、随机效应荟萃回归和混合随机效应荟萃回归方法,以估计总体汇总干预效果。
我们的分析表明,纳入 PRECIS-2 分类作为协变量的混合荟萃回归模型得出的汇总效应量(ES)估计值更大(ES=-1.01,95%CI=[-1.52,-0.43]),而传统的随机效应荟萃分析(ES=-0.15,95%CI=[-0.23,-0.08])。
除了 PRECIS-2 工具的原始意图,即帮助研究人员选择试验设计外,PRECIS-2 工具还可用于解释系统评价和荟萃分析中已发表试验之间的研究间变异。我们建议研究人员在综合解释性和实用试验证据时采用混合荟萃回归方法。